broadSeq

With its broad coverage R packages and other tool, it will offer researchers of RNA-seq data an easy access to all the important and relevant analytical steps.

8
0
R

output: github_document
link-citations: TRUE
editor_options:
markdown:
wrap: 72

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)
library(dplyr)
require(ggplot2)

broadSeq

# library(emojifont)
io_flow <- read.csv(system.file("extdata", "Method_io.csv", package = "broadSeq"))

df <- io_flow %>% 
    ggsankey::make_long(Input, Method, Output)


pl <- ggplot(df, aes(x = x,                        
                     next_x = next_x,                                     
                     node = node,
                     next_node = next_node,        
                     fill = factor(node),
                     label = node))+scale_x_discrete(position = "top") 

pl <- pl + ggsankey::geom_sankey(flow.alpha = 0.5,          #This Creates the transparency of your node 
                      node.color = "black",     # This is your node color        
                      show.legend = FALSE)        # This determines if you want your legend to show

pl <- pl + ggsankey::geom_sankey_label(show.legend = FALSE,
                             color = "black", 
                             fill = "white") # This specifies the Label format for each node 

io_p <- pl+labs(x="")+ ggsankey::theme_sankey(base_size = 25)
io_p

The goal of broadSeq is to do easily RNA-seq data analysis with multiple
methods (usually which needs many different input formats). Here the
user will provide the expression data as a r BiocStyle::Biocpkg("SummarizedExperiment") object
and will get results from different methods. This function oriented package will
give user freedom to develop customized and reproducible workflow. Additionally,
it will also help to quickly evaluate different methods easily.

io_flow <- read.csv(system.file("extdata", "broadSeq_pipeline.csv", package = "broadSeq"))

df <- io_flow %>% 
    ggsankey::make_long(Input,  Function, Method, Output,ggpubr)
df$node <- factor(df$node, levels = unique(c( io_flow$Function, io_flow$Method,
                                           io_flow$Output, io_flow$ggpubr)))

pl <- ggplot(df, aes(x = x,                        
                     next_x = next_x,                                     
                     node = node,
                     next_node = next_node,        
                     fill = factor(node),
                     label = node))+scale_x_discrete(position = "top") 

pl <- pl + ggsankey::geom_sankey(flow.alpha = 0.5,  #This Creates the transparency of your node 
                      show.legend = FALSE)      # This determines if you want your legend to show

pl <- pl + ggsankey::geom_sankey_label(show.legend = FALSE,
                             color = "black", size =3 ,
                             fill = "white") # This specifies the Label format for each node 

pl+labs(x="")+ ggsankey::theme_sankey(base_size = 20)

This is under active development. Please report if you find any bug.

Installation

if (!require("BiocManager"))
    install.packages("BiocManager")
BiocManager::install("broadSeq")

You can install the development version of broadSeq from
GitHub with:

# install.packages("devtools")
devtools::install_github("dasroy/broadSeq")

For package documentation

devtools::install_github("dasroy/broadSeq", build_vignettes = TRUE)
browseVignettes(package = "broadSeq")