With its broad coverage R packages and other tool, it will offer researchers of RNA-seq data an easy access to all the important and relevant analytical steps.
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
library(dplyr)
require(ggplot2)
# library(emojifont)
io_flow <- read.csv(system.file("extdata", "Method_io.csv", package = "broadSeq"))
df <- io_flow %>%
ggsankey::make_long(Input, Method, Output)
pl <- ggplot(df, aes(x = x,
next_x = next_x,
node = node,
next_node = next_node,
fill = factor(node),
label = node))+scale_x_discrete(position = "top")
pl <- pl + ggsankey::geom_sankey(flow.alpha = 0.5, #This Creates the transparency of your node
node.color = "black", # This is your node color
show.legend = FALSE) # This determines if you want your legend to show
pl <- pl + ggsankey::geom_sankey_label(show.legend = FALSE,
color = "black",
fill = "white") # This specifies the Label format for each node
io_p <- pl+labs(x="")+ ggsankey::theme_sankey(base_size = 25)
io_p
The goal of broadSeq is to do easily RNA-seq data analysis with multiple
methods (usually which needs many different input formats). Here the
user will provide the expression data as a r BiocStyle::Biocpkg("SummarizedExperiment")
object
and will get results from different methods. This function oriented package will
give user freedom to develop customized and reproducible workflow. Additionally,
it will also help to quickly evaluate different methods easily.
io_flow <- read.csv(system.file("extdata", "broadSeq_pipeline.csv", package = "broadSeq"))
df <- io_flow %>%
ggsankey::make_long(Input, Function, Method, Output,ggpubr)
df$node <- factor(df$node, levels = unique(c( io_flow$Function, io_flow$Method,
io_flow$Output, io_flow$ggpubr)))
pl <- ggplot(df, aes(x = x,
next_x = next_x,
node = node,
next_node = next_node,
fill = factor(node),
label = node))+scale_x_discrete(position = "top")
pl <- pl + ggsankey::geom_sankey(flow.alpha = 0.5, #This Creates the transparency of your node
show.legend = FALSE) # This determines if you want your legend to show
pl <- pl + ggsankey::geom_sankey_label(show.legend = FALSE,
color = "black", size =3 ,
fill = "white") # This specifies the Label format for each node
pl+labs(x="")+ ggsankey::theme_sankey(base_size = 20)
if (!require("BiocManager"))
install.packages("BiocManager")
BiocManager::install("broadSeq")
You can install the development version of broadSeq from
GitHub with:
# install.packages("devtools")
devtools::install_github("dasroy/broadSeq")
For package documentation
devtools::install_github("dasroy/broadSeq", build_vignettes = TRUE)
browseVignettes(package = "broadSeq")