Open Source Deep Research Alternative to Reason and Search on Private Data. Written in Python.
DeepSearcher combines reasoning LLMs (OpenAI o1, o3-mini, DeepSeek, Grok 3, Claude 3.7 Sonnet, QwQ, etc.) and Vector Databases (Milvus, Zilliz Cloud etc.) to perform search, evaluation, and reasoning based on private data, providing highly accurate answer and comprehensive report. This project is suitable for enterprise knowledge management, intelligent Q&A systems, and information retrieval scenarios.
Install DeepSearcher using pip:
# Clone the repository
git clone https://github.com/zilliztech/deep-searcher.git
# MAKE SURE the python version is greater than or equal to 3.10
# Recommended: Create a Python virtual environment
cd deep-searcher
python3 -m venv .venv
source .venv/bin/activate
# Install dependencies
pip install -e .
Prepare your OPENAI_API_KEY
in your environment variables. If you change the LLM in the configuration, make sure to prepare the corresponding API key.
from deepsearcher.configuration import Configuration, init_config
from deepsearcher.online_query import query
config = Configuration()
# Customize your config here,
# more configuration see the Configuration Details section below.
config.set_provider_config("llm", "OpenAI", {"model": "o1-mini"})
config.set_provider_config("embedding", "OpenAIEmbedding", {"model": "text-embedding-ada-002"})
init_config(config = config)
# Load your local data
from deepsearcher.offline_loading import load_from_local_files
load_from_local_files(paths_or_directory=your_local_path)
# (Optional) Load from web crawling (`FIRECRAWL_API_KEY` env variable required)
from deepsearcher.offline_loading import load_from_website
load_from_website(urls=website_url)
# Query
result = query("Write a report about xxx.") # Your question here
config.set_provider_config("llm", "(LLMName)", "(Arguments dict)")
The "LLMName" can be one of the following: ["DeepSeek", "OpenAI", "XAI", "SiliconFlow", "PPIO", "TogetherAI", "Gemini", "Ollama"]
The "Arguments dict" is a dictionary that contains the necessary arguments for the LLM class.
Make sure you have prepared your OPENAI API KEY as an env variable OPENAI_API_KEY
.
config.set_provider_config("llm", "OpenAI", {"model": "o1-mini"})
More details about OpenAI models: https://platform.openai.com/docs/models
Make sure you have prepared your DEEPSEEK API KEY as an env variable DEEPSEEK_API_KEY
.
config.set_provider_config("llm", "DeepSeek", {"model": "deepseek-reasoner"})
More details about DeepSeek: https://api-docs.deepseek.com/
Make sure you have prepared your SILICONFLOW API KEY as an env variable SILICONFLOW_API_KEY
.
config.set_provider_config("llm", "SiliconFlow", {"model": "deepseek-ai/DeepSeek-R1"})
More details about SiliconFlow: https://docs.siliconflow.cn/quickstart
Make sure you have prepared your TOGETHER API KEY as an env variable TOGETHER_API_KEY
.
config.set_provider_config("llm", "TogetherAI", {"model": "deepseek-ai/DeepSeek-R1"})
You need to install together before running, execute: pip install together
. More details about TogetherAI: https://www.together.ai/
Make sure you have prepared your XAI API KEY as an env variable XAI_API_KEY
.
config.set_provider_config("llm", "XAI", {"model": "grok-2-latest"})
More details about XAI Grok: https://docs.x.ai/docs/overview#featured-models
Make sure you have prepared your ANTHROPIC API KEY as an env variable ANTHROPIC_API_KEY
.
config.set_provider_config("llm", "Anthropic", {"model": "claude-3-7-sonnet-latest"})
More details about Anthropic Claude: https://docs.anthropic.com/en/home
Make sure you have prepared your GEMINI API KEY as an env variable GEMINI_API_KEY
.
config.set_provider_config('llm', 'Gemini', { 'model': 'gemini-2.0-flash' })
You need to install gemini before running, execute: pip install google-genai
. More details about Gemini: https://ai.google.dev/gemini-api/docs
Make sure you have prepared your PPIO API KEY as an env variable PPIO_API_KEY
. You can create an API Key here.
config.set_provider_config("llm", "PPIO", {"model": "deepseek/deepseek-r1-turbo"})
More details about PPIO: https://ppinfra.com/docs/get-started/quickstart.html?utm_source=github_deep-searcher
Follow these instructions to set up and run a local Ollama instance:
Download and install Ollama onto the available supported platforms (including Windows Subsystem for Linux).
View a list of available models via the model library.
Fetch available LLM models via ollama pull <name-of-model>
Example: ollama pull qwq
To chat directly with a model from the command line, use ollama run <name-of-model>
.
By default, Ollama has a REST API for running and managing models on http://localhost:11434.
config.set_provider_config("llm", "Ollama", {"model": "qwq"})
Make sure you have prepared your Volcengine API KEY as an env variable VOLCENGINE_API_KEY
. You can create an API Key here.
config.set_provider_config("llm", "Volcengine", {"model": "deepseek-r1-250120"})
More details about Volcengine: https://www.volcengine.com/docs/82379/1099455?utm_source=github_deep-searcher
Make sure you have prepared your GLM API KEY as an env variable GLM_API_KEY
.
config.set_provider_config("llm", "GLM", {"model": "glm-4-plus"})
You need to install zhipuai before running, execute: pip install zhipuai
. More details about GLM: https://bigmodel.cn/dev/welcome
Make sure you have prepared your Amazon Bedrock API KEY as an env variable AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
.
config.set_provider_config("llm", "Bedrock", {"model": "us.deepseek.r1-v1:0"})
You need to install boto3 before running, execute: pip install boto3
. More details about Amazon Bedrock: https://docs.aws.amazon.com/bedrock/
config.set_provider_config("embedding", "(EmbeddingModelName)", "(Arguments dict)")
The "EmbeddingModelName" can be one of the following: ["MilvusEmbedding", "OpenAIEmbedding", "VoyageEmbedding", "SiliconflowEmbedding", "PPIOEmbedding"]
The "Arguments dict" is a dictionary that contains the necessary arguments for the embedding model class.
Make sure you have prepared your OpenAI API KEY as an env variable OPENAI_API_KEY
.
config.set_provider_config("embedding", "OpenAIEmbedding", {"model": "text-embedding-3-small"})
More details about OpenAI models: https://platform.openai.com/docs/guides/embeddings/use-cases
Use the built-in embedding model in Pymilvus, you can set the model name as "default"
, "BAAI/bge-base-en-v1.5"
, "BAAI/bge-large-en-v1.5"
, "jina-embeddings-v3"
, etc.
See [milvus_embedding.py](deepsearcher/embedding/milvus_embedding.py) for more details.
config.set_provider_config("embedding", "MilvusEmbedding", {"model": "BAAI/bge-base-en-v1.5"})
config.set_provider_config("embedding", "MilvusEmbedding", {"model": "jina-embeddings-v3"})
For Jina's embedding model, you needJINAAI_API_KEY
.
You need to install pymilvus model before running, execute: pip install pymilvus.model
. More details about Pymilvus: https://milvus.io/docs/embeddings.md
Make sure you have prepared your VOYAGE API KEY as an env variable VOYAGE_API_KEY
.
config.set_provider_config("embedding", "VoyageEmbedding", {"model": "voyage-3"})
You need to install voyageai before running, execute: pip install voyageai
. More details about VoyageAI: https://docs.voyageai.com/embeddings/
config.set_provider_config("embedding", "BedrockEmbedding", {"model": "amazon.titan-embed-text-v2:0"})
You need to install boto3 before running, execute: pip install boto3
. More details about Amazon Bedrock: https://docs.aws.amazon.com/bedrock/
Make sure you have prepared your Siliconflow API KEY as an env variable SILICONFLOW_API_KEY
.
config.set_provider_config("embedding", "SiliconflowEmbedding", {"model": "BAAI/bge-m3"})
More details about Siliconflow: https://docs.siliconflow.cn/en/api-reference/embeddings/create-embeddings
Make sure you have prepared your Volcengine API KEY as an env variable VOLCENGINE_API_KEY
.
config.set_provider_config("embedding", "VolcengineEmbedding", {"model": "doubao-embedding-text-240515"})
More details about Volcengine: https://www.volcengine.com/docs/82379/1302003
Make sure you have prepared your GLM API KEY as an env variable GLM_API_KEY
.
config.set_provider_config("embedding", "GLMEmbedding", {"model": "embedding-3"})
You need to install zhipuai before running, execute: pip install zhipuai
. More details about GLM: https://bigmodel.cn/dev/welcome
Make sure you have prepared your Gemini API KEY as an env variable GEMINI_API_KEY
.
config.set_provider_config("embedding", "GeminiEmbedding", {"model": "text-embedding-004"})
You need to install gemini before running, execute: pip install google-genai
. More details about Gemini: https://ai.google.dev/gemini-api/docs
config.set_provider_config("embedding", "OllamaEmbedding", {"model": "bge-m3"})
You need to install ollama before running, execute: pip install ollama
. More details about Ollama Python SDK: https://github.com/ollama/ollama-python
Make sure you have prepared your PPIO API KEY as an env variable PPIO_API_KEY
.
config.set_provider_config("embedding", "PPIOEmbedding", {"model": "baai/bge-m3"})
More details about PPIO: https://ppinfra.com/docs/get-started/quickstart.html?utm_source=github_deep-searcher
config.set_provider_config("vector_db", "(VectorDBName)", "(Arguments dict)")
The "VectorDBName" can be one of the following: ["Milvus"] (Under development)
The "Arguments dict" is a dictionary that contains the necessary arguments for the Vector Database class.
config.set_provider_config("vector_db", "Milvus", {"uri": "./milvus.db", "token": ""})
More details about Milvus Config:
uri
as a local file, e.g. ./milvus.db
, is the most convenient method, as it automatically utilizes Milvus Lite to store all data in this file.
http://localhost:19530
, as your uri
.
uri
and token
according to the Public Endpoint and API Key in Zilliz Cloud.
config.set_provider_config("file_loader", "(FileLoaderName)", "(Arguments dict)")
The "FileLoaderName" can be one of the following: ["PDFLoader", "TextLoader", "UnstructuredLoader"]
The "Arguments dict" is a dictionary that contains the necessary arguments for the File Loader class.
Make sure you have prepared your Unstructured API KEY and API URL as env variables UNSTRUCTURED_API_KEY
and UNSTRUCTURED_API_URL
.
config.set_provider_config("file_loader", "UnstructuredLoader", {})
Currently supported file types: ["pdf"] (Under development)
You need to install unstructured-ingest before running, execute: pip install unstructured-ingest
. More details about Unstructured: https://docs.unstructured.io/ingestion/overview
config.set_provider_config("web_crawler", "(WebCrawlerName)", "(Arguments dict)")
The "WebCrawlerName" can be one of the following: ["FireCrawlCrawler", "Crawl4AICrawler", "JinaCrawler"]
The "Arguments dict" is a dictionary that contains the necessary arguments for the Web Crawler class.
Make sure you have prepared your FireCrawl API KEY as an env variable FIRECRAWL_API_KEY
.
config.set_provider_config("web_crawler", "FireCrawlCrawler", {})
More details about FireCrawl: https://docs.firecrawl.dev/introduction
Make sure you have run crawl4ai-setup
in your environment.
config.set_provider_config("web_crawler", "Crawl4AICrawler", {"browser_config": {"headless": True, "verbose": True}})
You need to install crawl4ai before running, execute: pip install crawl4ai
. More details about Crawl4AI: https://docs.crawl4ai.com/
Make sure you have prepared your Jina Reader API KEY as an env variable JINA_API_TOKEN
or JINAAI_API_KEY
.
config.set_provider_config("web_crawler", "JinaCrawler", {})
More details about Jina Reader: https://jina.ai/reader/
deepsearcher load "your_local_path_or_url"
# load into a specific collection
deepsearcher load "your_local_path_or_url" --collection_name "your_collection_name" --collection_desc "your_collection_description"
Example loading from local file:
deepsearcher load "/path/to/your/local/file.pdf"
# or more files at once
deepsearcher load "/path/to/your/local/file1.pdf" "/path/to/your/local/file2.md"
Example loading from url (Set FIRECRAWL_API_KEY
in your environment variables, see FireCrawl for more details):
deepsearcher load "https://www.wikiwand.com/en/articles/DeepSeek"
deepsearcher query "Write a report about xxx."
More help information
deepsearcher --help
For more help information about a specific subcommand, you can use deepsearcher [subcommand] --help
.
deepsearcher load --help
deepsearcher query --help
You can configure all arguments by modifying config.yaml to set up your system with default modules.
For example, set your OPENAI_API_KEY
in the llm
section of the YAML file.
The main script will run a FastAPI service with default address localhost:8000
.
$ python main.py
You can open url http://localhost:8000/docs in browser to access the web service.
Click on the button βTry it outβ, it allows you to fill the parameters and directly interact with the API.
Q1: Why I failed to parse LLM output format / How to select the LLM?
A1: Small LLMs struggle to follow the prompt to generate a desired response, which usually cause the format parsing problem. A better practice is to use large reasoning models e.g. deepseek-r1 671b, OpenAI o-series, Claude 3.7 sonnet, etc. as your LLM.
Q2:
OSError: We couldnβt connect to βhttps://huggingface.coβ to load this file, couldnβt find it in the cached files and it looks like GPTCache/paraphrase-albert-small-v2 is not the path to a directory containing a file named config.json.
Checkout your internet connection or see how to run the library in offline mode at βhttps://huggingface.co/docs/transformers/installation#offline-modeβ.
A2: This is mainly due to abnormal access to huggingface, which may be a network or permission problem. You can try the following two methods:
export HF_ENDPOINT=https://hf-mirror.com
export HUGGING_FACE_HUB_TOKEN=xxxx
Q3: DeepSearcher doesnβt run in Jupyter notebook.
A3: Install nest_asyncio
and then put this code block in front of your jupyter notebook.
pip install nest_asyncio
import nest_asyncio
nest_asyncio.apply()
OPENAI_API_KEY
env variable required)VOYAGE_API_KEY
env variable required)AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
env variable required)PPIO_API_KEY
env variable required)OPENAI_API_KEY
env variable required)DEEPSEEK_API_KEY
env variable required)XAI_API_KEY
env variable required)ANTHROPIC_API_KEY
env variable required)SILICONFLOW_API_KEY
env variable required)PPIO_API_KEY
env variable required)TOGETHER_API_KEY
env variable required)GEMINI_API_KEY
env variable required)SAMBANOVA_API_KEY
env variable required)UNSTRUCTURED_API_KEY
and UNSTRUCTURED_URL
env variables required)FIRECRAWL_API_KEY
env variable required)JINA_API_TOKEN
env variable required)crawl4ai-setup
for the first time)See the Evaluation directory for more details.
We welcome contributions! Star & Fork the project and help us build a more powerful DeepSearcher! π―