Your standard library for metaprogramming
Your standard library for metaprogramming
#include <boost/hana.hpp>
#include <cassert>
#include <string>
namespace hana = boost::hana;
using namespace hana::literals;
struct Fish { std::string name; };
struct Cat { std::string name; };
struct Dog { std::string name; };
int main() {
// Sequences capable of holding heterogeneous objects, and algorithms
// to manipulate them.
auto animals = hana::make_tuple(Fish{"Nemo"}, Cat{"Garfield"}, Dog{"Snoopy"});
auto names = hana::transform(animals, [](auto a) {
return a.name;
});
assert(hana::reverse(names) == hana::make_tuple("Snoopy", "Garfield", "Nemo"));
// No compile-time information is lost: even if `animals` can't be a
// constant expression because it contains strings, its length is constexpr.
static_assert(hana::length(animals) == 3u, "");
// Computations on types can be performed with the same syntax as that of
// normal C++. Believe it or not, everything is done at compile-time.
auto animal_types = hana::make_tuple(hana::type_c<Fish*>, hana::type_c<Cat&>, hana::type_c<Dog*>);
auto animal_ptrs = hana::filter(animal_types, [](auto a) {
return hana::traits::is_pointer(a);
});
static_assert(animal_ptrs == hana::make_tuple(hana::type_c<Fish*>, hana::type_c<Dog*>), "");
// And many other goodies to make your life easier, including:
// 1. Access to elements in a tuple with a sane syntax.
static_assert(animal_ptrs[0_c] == hana::type_c<Fish*>, "");
static_assert(animal_ptrs[1_c] == hana::type_c<Dog*>, "");
// 2. Unroll loops at compile-time without hassle.
std::string s;
hana::int_c<10>.times([&]{ s += "x"; });
// equivalent to s += "x"; s += "x"; ... s += "x";
// 3. Easily check whether an expression is valid.
// This is usually achieved with complex SFINAE-based tricks.
auto has_name = hana::is_valid([](auto&& x) -> decltype((void)x.name) { });
static_assert(has_name(animals[0_c]), "");
static_assert(!has_name(1), "");
}
You can browse the documentation online at http://boostorg.github.io/hana.
The documentation covers everything you should need including installing the
library, a tutorial explaining what Hana is and how to use it, and an extensive
reference section with examples. The remainder of this README is mostly for
people that wish to work on the library itself, not for its users.
An offline copy of the documentation can be obtained by checking out the
gh-pages
branch. To avoid overwriting the current directory, you can clone
the gh-pages
branch into a subdirectory like doc/html
:
git clone http://github.com/boostorg/hana --branch=gh-pages --depth=1 doc/html
After issuing this, doc/html
will contain exactly the same static website
that is available online. Note that doc/html
is automatically
ignored by Git so updating the documentation won’t pollute your index.
Setting yourself up to work on Hana is easy. First, you will need an
installation of CMake. Once this is done, you can cd
to the root
of the project and setup the build directory:
mkdir build
cmake -S . -B build
Sometimes, you’ll want to specify a custom compiler because the system’s
compiler is too old:
cmake -S . -B build -DCMAKE_CXX_COMPILER=/path/to/compiler
Usually, this will work just fine. However, on some older systems, the standard
library and/or compiler provided by default does not support C++14. If
this is your case, the wiki has more information about
setting you up on different systems.
Normally, Hana tries to find Boost headers if you have them on your system.
It’s also fine if you don’t have them; a few tests requiring the Boost headers
will be disabled in that case. However, if you’d like Hana to use a custom
installation of Boost, you can specify the path to this custom installation:
cmake -S . -B build -DCMAKE_CXX_COMPILER=/path/to/compiler -DBOOST_ROOT=/path/to/boost
You can now build and run the unit tests and the examples:
cmake --build build --target check
You should be aware that compiling the unit tests is pretty time and RAM
consuming, especially the tests for external adapters. This is due to the
fact that Hana’s unit tests are very thorough, and also that heterogeneous
sequences in other libraries tend to have horrible compile-time performance.
There are also optional targets which are enabled only when the required
software is available on your computer. For example, generating the
documentation requires Doxygen to be installed. An informative message
will be printed during the CMake generation step whenever an optional target
is disabled. You can install any missing software and then re-run the CMake
generation to update the list of available targets.
Tip
You can use the
help
target to get a list of all the available targets.
If you want to add unit tests or examples, just add a source file in test/
or example/
and then re-run the CMake generation step so the new source
file is known to the build system. Let’s suppose the relative path from the
root of the project to the new source file is path/to/file.cpp
. When you
re-run the CMake generation step, a new target named path.to.file
will be
created, and a test of the same name will also be created. Hence,
cmake --build build --target path.to.file # Builds the program associated to path/to/file.cpp
ctest --test-dir build -R path.to.file # Runs the program as a test
Tip for Sublime Text users
If you use the provided hana.sublime-project file,
you can select the “[Hana] Build current file” build system. When viewing a
file to which a target is associated (like a test or an example), you can
then compile it by pressing ⌘B, or compile and then run it using ⇧⌘B.
The project is organized in a couple of subdirectories.
doc/html
subdirectory is automatically ignoredgh-pages
branch into that directory, as explained above.Please see CONTRIBUTING.md.
Please see LICENSE.md.
Releasing is now done exclusively via the Boost release process. There are no
separate releases of Hana since the library is now pretty stable.