Industry-strength Computer Vision workflows with Keras
[!IMPORTANT]
📢 KerasCV is moving to KerasHub! 📢
Read the announcement.KerasCV will not continue to work as is; nothing will break. All development
of new vision models should move to KerasHub.
KerasCV is a library of modular computer vision components that work natively
with TensorFlow, JAX, or PyTorch. Built on Keras 3, these models, layers,
metrics, callbacks, etc., can be trained and serialized in any framework and
re-used in another without costly migrations. See “Configuring your backend”
below for more details on multi-framework KerasCV.
KerasCV can be understood as a horizontal extension of the Keras API: the
components are new first-party Keras objects that are too specialized to be
added to core Keras. They receive the same level of polish and backwards
compatibility guarantees as the core Keras API, and they are maintained by the
Keras team.
Our APIs assist in common computer vision tasks such as data augmentation,
classification, object detection, segmentation, image generation, and more.
Applied computer vision engineers can leverage KerasCV to quickly assemble
production-grade, state-of-the-art training and inference pipelines for all of
these common tasks.
KerasCV supports both Keras 2 and Keras 3. We recommend Keras 3 for all new
users, as it enables using KerasCV models and layers with JAX, TensorFlow and
PyTorch.
To install the latest KerasCV release with Keras 2, simply run:
pip install --upgrade keras-cv tensorflow
There are currently two ways to install Keras 3 with KerasCV. To install the
latest changes for KerasCV and Keras, you can use our nightly package.
pip install --upgrade keras-cv-nightly tf-nightly
To install the stable versions of KerasCV and Keras 3, you should install Keras
3 after installing KerasCV. This is a temporary step while TensorFlow is
pinned to Keras 2, and will no longer be necessary after TensorFlow 2.16.
pip install --upgrade keras-cv tensorflow
pip install --upgrade keras
[!IMPORTANT]
Keras 3 will not function with TensorFlow 2.14 or earlier.
If you have Keras 3 installed in your environment (see installation above),
you can use KerasCV with any of JAX, TensorFlow and PyTorch. To do so, set the
KERAS_BACKEND
environment variable. For example:
so by setting the KERAS_BACKEND
environment variable. For example:
export KERAS_BACKEND=jax
Or in Colab, with:
import os
os.environ["KERAS_BACKEND"] = "jax"
import keras_cv
[!IMPORTANT]
Make sure to set theKERAS_BACKEND
before import any Keras libraries, it
will be used to set up Keras when it is first imported.
Once that configuration step is done, you can just import KerasCV and start
using it on top of your backend of choice:
import keras_cv
import keras
filepath = keras.utils.get_file(origin="https://i.imgur.com/gCNcJJI.jpg")
image = np.array(keras.utils.load_img(filepath))
image_resized = keras.ops.image.resize(image, (640, 640))[None, ...]
model = keras_cv.models.YOLOV8Detector.from_preset(
"yolo_v8_m_pascalvoc",
bounding_box_format="xywh",
)
predictions = model.predict(image_resized)
import tensorflow as tf
import keras_cv
import tensorflow_datasets as tfds
import keras
# Create a preprocessing pipeline with augmentations
BATCH_SIZE = 16
NUM_CLASSES = 3
augmenter = keras_cv.layers.Augmenter(
[
keras_cv.layers.RandomFlip(),
keras_cv.layers.RandAugment(value_range=(0, 255)),
keras_cv.layers.CutMix(),
],
)
def preprocess_data(images, labels, augment=False):
labels = tf.one_hot(labels, NUM_CLASSES)
inputs = {"images": images, "labels": labels}
outputs = inputs
if augment:
outputs = augmenter(outputs)
return outputs['images'], outputs['labels']
train_dataset, test_dataset = tfds.load(
'rock_paper_scissors',
as_supervised=True,
split=['train', 'test'],
)
train_dataset = train_dataset.batch(BATCH_SIZE).map(
lambda x, y: preprocess_data(x, y, augment=True),
num_parallel_calls=tf.data.AUTOTUNE).prefetch(
tf.data.AUTOTUNE)
test_dataset = test_dataset.batch(BATCH_SIZE).map(
preprocess_data, num_parallel_calls=tf.data.AUTOTUNE).prefetch(
tf.data.AUTOTUNE)
# Create a model using a pretrained backbone
backbone = keras_cv.models.EfficientNetV2Backbone.from_preset(
"efficientnetv2_b0_imagenet"
)
model = keras_cv.models.ImageClassifier(
backbone=backbone,
num_classes=NUM_CLASSES,
activation="softmax",
)
model.compile(
loss='categorical_crossentropy',
optimizer=keras.optimizers.Adam(learning_rate=1e-5),
metrics=['accuracy']
)
# Train your model
model.fit(
train_dataset,
validation_data=test_dataset,
epochs=8,
)
If you’d like to contribute, please see our contributing guide.
To find an issue to tackle, please check our call for contributions.
We would like to leverage/outsource the Keras community not only for bug reporting,
but also for active development for feature delivery. To achieve this, here is the predefined
process for how to contribute to this repository:
Thank you to all of our wonderful contributors!
Many models in KerasCV come with pre-trained weights.
With the exception of StableDiffusion and the standard Vision Transformer, all of these weights are trained using Keras and
KerasCV components and training scripts in this repository.
While some models are not trained with the same parameters or preprocessing pipeline
as defined in their original publications, the KerasCV team ensures strong numerical performance.
Performance metrics for the provided pre-trained weights can be found
in the training history for each documented task.
An example of this can be found in the ImageNet classification training
history for backbone models.
All results are reproducible using the training scripts in this repository.
Historically, many models have been trained on image datasets rescaled via manually
crafted normalization schemes.
The most common variant of manually crafted normalization scheme is subtraction of the
imagenet mean pixel followed by standard deviation normalization based on the imagenet
pixel standard deviation.
This scheme is an artifact of the days of manual feature engineering, but is no longer
required to score state of the art scores using modern deep learning architectures.
Due to this, KerasCV is standardized to operate on images that have been rescaled using
a simple 1/255
rescaling layer.
This can be seen in all KerasCV training pipelines and code examples.
Note that in some of the 3D Object Detection layers, custom TF ops are used. The
binaries for these ops are not shipped in our PyPi package in order to keep our
wheels pure-Python.
If you’d like to use these custom ops, you can install from source using the
instructions below.
Installing custom ops from source requires the Bazel build
system (version >= 5.4.0). Steps to install Bazel can be found here.
git clone https://github.com/keras-team/keras-cv.git
cd keras-cv
python3 build_deps/configure.py
bazel build build_pip_pkg
export BUILD_WITH_CUSTOM_OPS=true
bazel-bin/build_pip_pkg wheels
pip install wheels/keras_cv-*.whl
Note that GitHub actions exist to release KerasCV with custom ops, but are
currently disabled. You can use these actions
in your own fork to create wheels for Linux (manylinux2014), MacOS (both x86 and ARM),
and Windows.
KerasCV provides access to pre-trained models via the keras_cv.models
API.
These pre-trained models are provided on an “as is” basis, without warranties
or conditions of any kind.
The following underlying models are provided by third parties, and are subject to separate
licenses:
StableDiffusion, Vision Transformer
If KerasCV helps your research, we appreciate your citations.
Here is the BibTeX entry:
@misc{wood2022kerascv,
title={KerasCV},
author={Wood, Luke and Tan, Zhenyu and Stenbit, Ian and Bischof, Jonathan and Zhu, Scott and Chollet, Fran\c{c}ois and Sreepathihalli, Divyashree and Sampath, Ramesh and others},
year={2022},
howpublished={\url{https://github.com/keras-team/keras-cv}},
}