[CVPR 2022 Oral] Official repository for "MAXIM: Multi-Axis MLP for Image Processing". SOTA for denoising, deblurring, deraining, dehazing, and enhancement.
This repo hosts the official implementation of the MAXIM models:
“MAXIM: Multi-Axis MLP for Image Processing”. CVPR 2022 Oral.
Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao Li
Google Research, University of Texas at Austin
Disclaimer: This is not an officially supported Google product.
News:
Try the web demo for Image Denoising, Deblurring, Deraining, Dehazing and Enhancement with customized input image here
Install dependencies:
pip install -r requirements.txt
Setup project:
pip install .
We provide the pre-trained models and visual results.
Please contact us if you have any questions or requests.
Task | Dataset | PSNR | SSIM | Model | #params | FLOPs | ckpt | outputs |
---|---|---|---|---|---|---|---|---|
Denoising | SIDD | 39.96 | 0.960 | MAXIM-3S | 22.2M | 339G | ckpt | images |
Denoising | DND | 39.84 | 0.954 | MAXIM-3S | 22.2M | 339G | ckpt | images |
Deblurring | GoPro | 32.86 | 0.961 | MAXIM-3S | 22.2M | 339G | ckpt | images |
Deblurring | HIDE | 32.83 | 0.956 | MAXIM-3S | 22.2M | 339G | ckpt | images |
Deblurring | REDS | 28.93 | 0.865 | MAXIM-3S | 22.2M | 339G | ckpt | images |
Deblurring | RealBlur-R | 39.45 | 0.962 | MAXIM-3S | 22.2M | 339G | ckpt | images |
Deblurring | RealBlur-J | 32.84 | 0.935 | MAXIM-3S | 22.2M | 339G | ckpt | images |
Deraining | Rain13k | 33.24 | 0.933 | MAXIM-2S | 14.1M | 216G | ckpt | images |
Deraining | Raindrop | 31.87 | 0.935 | MAXIM-2S | 14.1M | 216G | ckpt | images |
Dehazing | RESIDE-Indoor | 38.11 | 0.991 | MAXIM-2S | 14.1M | 216G | ckpt | images |
Dehazing | RESIDE-Outdoor | 34.19 | 0.985 | MAXIM-2S | 14.1M | 216G | ckpt | images |
Enhancement | LOL | 23.43 | 0.863 | MAXIM-2S | 14.1M | 216G | ckpt | images |
Enhancement | FiveK | 26.15 | 0.945 | MAXIM-2S | 14.1M | 216G | ckpt | images |
First download corresponding checkpoints and then go ahead and run:
python3 maxim/run_eval.py --task Denoising --ckpt_path ${SIDD_CKPT_PATH} \
--input_dir maxim/images/Denoising --output_dir maxim/images/Results --has_target=False
python3 maxim/run_eval.py --task Deblurring --ckpt_path ${GOPRO_CKPT_PATH} \
--input_dir maxim/images/Deblurring --output_dir maxim/images/Results --has_target=False
Rain streak:
python3 maxim/run_eval.py --task Deraining --ckpt_path ${RAIN13K_CKPT_PATH} \
--input_dir maxim/images/Deraining --output_dir maxim/images/Results --has_target=False
Rain drop:
python3 maxim/run_eval.py --task Deraining --ckpt_path ${RAINDROP_CKPT_PATH} \
--input_dir maxim/images/Deraining --output_dir maxim/images/Results --has_target=False
Indoor:
python3 maxim/run_eval.py --task Dehazing --ckpt_path ${REDISE_INDOOR_CKPT_PATH} \
--input_dir maxim/images/Dehazing --output_dir maxim/images/Results --has_target=False
Outdoor:
python3 maxim/run_eval.py --task Dehazing --ckpt_path ${REDISE_OUTDOOR_CKPT_PATH} \
--input_dir maxim/images/Dehazing --output_dir maxim/images/Results --has_target=False
Low-light enhancement:
python3 maxim/run_eval.py --task Enhancement --ckpt_path ${LOL_CKPT_PATH} \
--input_dir maxim/images/Enhancement --output_dir maxim/images/Results --has_target=False
Retouching:
python3 maxim/run_eval.py --task Enhancement --ckpt_path ${FIVEK_CKPT_PATH} \
--input_dir maxim/images/Enhancement --output_dir maxim/images/Results --has_target=False
Synthetic blur |
Realistic blur |
|
|
Rain streak |
Rain drop |
Should you find this repository useful, please consider citing:
@article{tu2022maxim,
title={MAXIM: Multi-Axis MLP for Image Processing},
author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
journal={CVPR},
year={2022},
}
This repository is built on the vision_transformer and musiq repositories. Our work is also inspired by HiT, MPRNet, and HINet.