benchmark tooling that loves you ❤️
bun add mitata
npm install mitata
try mitata in browser with ai assistant at https://bolt.new/~/mitata
node --expose-gc ...
)javascript | c++ single header |
---|---|
|
|
import { run } from 'mitata';
await run({ format: 'mitata', colors: false }); // default format
await run({ filter: /new Array.*/ }) // only run benchmarks that match regex filter
await run({ throw: true }); // will immediately throw instead of handling error quietly
// c++
auto stats = runner.run({ .colors = true, .format = "json", .filter = std::regex(".*") });
On runtimes that expose gc (e.g. bun, node --expose-gc ...
), mitata will automatically run garbage collection before each benchmark.
This behavior can be further customized via the gc
function on each benchmark (you should only do this when absolutely necessary - big gc spikes):
bench('lots of allocations', () => {
Array.from({ length: 1024 }, () => Array.from({ length: 1024 }, () => new Array(1024)));
})
// false | 'once' (default) | 'inner'
// once runs gc after warmup
// inner runs gc after warmup and before each (batch-)iteration
.gc('inner');
Out of box mitata can detect engine/runtime it’s running on and fall back to using alternative non-standard I/O functions. If your engine or runtime is missing support, open an issue or pr requesting for support.
$ xs bench.mjs
$ quickjs bench.mjs
$ d8 --expose-gc bench.mjs
$ spidermonkey -m bench.mjs
$ graaljs --js.timer-resolution=1 bench.mjs
$ /System/Library/Frameworks/JavaScriptCore.framework/Versions/Current/Helpers/jsc bench.mjs
// bench.mjs
import { print } from './src/lib.mjs';
import { run, bench } from './src/main.mjs'; // git clone
import { run, bench } from './node_modules/mitata/src/main.mjs'; // npm install
print('hello world'); // works on every engine
With other benchmarking libraries, often it’s quite hard to easily make benchmarks that go over a range or run the same function with different arguments without writing spaghetti code, but now with mitata converting your benchmark to use arguments is just a function call away.
import { bench } from 'mitata';
bench(function* look_mom_no_spaghetti(state) {
const len = state.get('len');
const len2 = state.get('len2');
yield () => new Array(len * len2);
})
.args('len', [1, 2, 3])
.range('len', 1, 1024) // 1, 8, 64, 512...
.dense_range('len', 1, 100) // 1, 2, 3 ... 99, 100
.args({ len: [1, 2, 3], len2: ['4', '5', '6'] }) // every possible combination
For those who love doing micro-benchmarks, mitata can automatically detect and inform you about optimization passes like dead code elimination without requiring any special engine flags.
-------------------------------------- -------------------------------
1 + 1 318.63 ps/iter 325.37 ps ▇ █ !
(267.92 ps … 14.28 ns) 382.81 ps ▁▁▁▁▁▁▁█▁▁█▁▁▁▁▁▁▁▁▁▁
empty function 319.36 ps/iter 325.37 ps █ ▅ !
(248.62 ps … 46.61 ns) 382.81 ps ▁▁▁▁▁▁▃▁▁█▁█▇▁▁▁▁▁▁▁▁
! = benchmark was likely optimized out (dead code elimination)
with mitata’s ascii rendering capabilities, now you can easily visualize samples in barplots, boxplots, lineplots, histograms, and get clear summaries without any additional tools or dependencies.
-------------------------------------- -------------------------------
1 + 1 318.11 ps/iter 325.37 ps ▇ █ !
(267.92 ps … 11.14 ns) 363.97 ps ▁▁▁▁▁▁▁▁█▁▁▁█▁▁▁▁▁▁▁▁
Date.now() 27.69 ns/iter 27.48 ns █
(27.17 ns … 44.10 ns) 32.74 ns ▃█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
┌ ┐
1 + 1 ┤■ 318.11 ps
Date.now() ┤■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 27.69 ns
└ ┘
-------------------------------------- -------------------------------
Bubble Sort 2.11 ms/iter 2.26 ms █
(1.78 ms … 6.93 ms) 4.77 ms ▃█▃▆▅▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Quick Sort 159.60 µs/iter 154.50 µs █
(133.13 µs … 792.21 µs) 573.00 µs ▅█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Native Sort 97.20 µs/iter 97.46 µs ██
(90.88 µs … 688.92 µs) 105.00 µs ▁▁▂▁▁▂▇██▇▃▃▃▃▃▂▂▂▁▁▁
┌ ┐
╷┌─┬─┐ ╷
Bubble Sort ├┤ │ ├───────────────────────┤
╵└─┴─┘ ╵
┬ ╷
Quick Sort │───┤
┴ ╵
┬
Native Sort │
┴
└ ┘
90.88 µs 2.43 ms 4.77 ms
-------------------------------------- -------------------------------
new Array(1) 3.57 ns/iter 3.20 ns 6.64 ns ▁█▄▂▁▁▁▁▁▁
new Array(8) 5.21 ns/iter 4.31 ns 8.85 ns ▁█▄▁▁▁▁▁▁▁
new Array(64) 17.94 ns/iter 13.40 ns 171.89 ns █▂▁▁▁▁▁▁▁▁
new Array(512) 188.05 ns/iter 246.88 ns 441.81 ns █▃▃▃▃▂▂▁▁▁
new Array(1024) 364.93 ns/iter 466.91 ns 600.34 ns █▄▁▁▁▅▅▃▂▁
Array.from(1) 29.73 ns/iter 29.24 ns 36.88 ns ▁█▄▃▂▁▁▁▁▁
Array.from(8) 33.96 ns/iter 32.99 ns 42.45 ns ▂█▄▂▂▁▁▁▁▁
Array.from(64) 146.52 ns/iter 143.82 ns 310.93 ns █▅▁▁▁▁▁▁▁▁
Array.from(512) 1.11 µs/iter 1.18 µs 1.34 µs ▃▅█▂▆▅▄▂▂▁
Array.from(1024) 1.98 µs/iter 2.09 µs 2.40 µs ▃█▃▃▇▇▄▂▁▁
summary
new Array($len)
5.42…8.33x faster than Array.from($len)
┌ ┐
Array.from($size) ⢠⠊
new Array($size) ⢀⠔⠁
⡠⠃
⢀⠎
⡔⠁
⡠⠊
⢀⠜
⡠⠃
⡔⠁
⢀⠎
⡠⠃
⢀⠜
⢠⠊ ⣀⣀⠤⠤⠒
⡰⠁ ⣀⡠⠤⠔⠒⠊⠉
⣀⣀⣀⠤⠜ ⣀⡠⠤⠒⠊⠉
⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣔⣒⣒⣊⣉⠭⠤⠤⠤⠤⠤⠒⠊⠉
└ ┘
In case you don’t need all the fluff that comes with mitata or just need raw results, mitata exports its fundamental building blocks to allow you to easily build your own tooling and wrappers without losing any core benefits of using mitata.
#include "src/mitata.hpp"
int main() {
auto stats = mitata::lib::fn([]() { /***/ })
}
import { B, measure } from 'mitata';
// lowest level for power users
const stats = await measure(function* (state) {
const size = state.get('x');
yield () => new Array(size);
}, {
args: { x: 1 },
batch_samples: 5 * 1024,
min_cpu_time: 1000 * 1e6,
});
// explore how magic happens
console.log(stats.debug) // -> jit optimized source code of benchmark
// higher level api that includes mitata's argument and range features
const b = new B('new Array($x)', state => {
const size = state.get('x');
for (const _ of state) new Array(size);
}).args('x', [1, 5, 10]);
const trial = await b.run();
mitata pushes the limits of javascript with jit-generated zero-overhead measurement loops to provide high-resolution timings. This allows providing features like cpu clock frequency and dead code detection without requiring access outside the js sandbox.
clk: ~3.13 GHz
cpu: Apple M2 Pro
runtime: node 22.8.0 (arm64-darwin)
benchmark avg (min … max) p75 p99 (min … top 1%)
-------------------------------------- -------------------------------
noop 93.09 ps/iter 91.55 ps █ !
(61.04 ps … 20.30 ns) 101.81 ps ▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁█▁▁▁▁▂
! = benchmark was likely optimized out (dead code elimination)
// vs other libraries
16041.00 ns/iter - node:perf_hooks (performance.timerify)
5.30 ns/iter - https://npmjs.com/benchmark
noop x 188,640,251 ops/sec ±5.71% (73 runs sampled)
36.62 ns/iter - https://npmjs.com/tinybench
┌─────────┬───────────┬──────────────┬───────────────────┬──────────┬──────────┐
│ (index) │ Task Name │ ops/sec │ Average Time (ns) │ Margin │ Samples │
├─────────┼───────────┼──────────────┼───────────────────┼──────────┼──────────┤
│ 0 │ 'noop' │ '27,308,739' │ 36.61831406333669 │ '±0.14%' │ 13654370 │
└─────────┴───────────┴──────────────┴───────────────────┴──────────┴──────────┘
156.5685 ns/iter - https://npmjs.com/cronometro
╔══════════════╤═════════╤═══════════════════╤═══════════╗
║ Slower tests │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ Fastest test │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ noop │ 10000 │ 6386980.78 op/sec │ ± 1.85 % ║
╚══════════════╧═════════╧═══════════════════╧═══════════╝
clk: ~0.06 GHz
cpu: Apple M2 Pro
runtime: node 22.8.0 (arm64-darwin)
benchmark avg (min … max) p75 p99 (min … top 1%)
-------------------------------------- -------------------------------
noop 14.69 ns/iter 15.09 ns ▃▅▇▇▇█▅▄▂ !
(13.33 ns … 19.69 ns) 16.24 ns ▁▄▅▇███████████▆▅▄▃▂▂
! = benchmark was likely optimized out (dead code elimination)
// vs other libraries
17500.00 ns/iter - node:perf_hooks (performance.timerify)
23.28 ns/iter - https://npmjs.com/benchmark
noop x 42,952,144 ops/sec ±0.87% (98 runs sampled)
184.92 ns/iter - https://npmjs.com/tinybench
┌─────────┬───────────┬─────────────┬────────────────────┬──────────┬─────────┐
│ (index) │ Task Name │ ops/sec │ Average Time (ns) │ Margin │ Samples │
├─────────┼───────────┼─────────────┼────────────────────┼──────────┼─────────┤
│ 0 │ 'noop' │ '5,407,742' │ 184.92003948393378 │ '±0.02%' │ 2703872 │
└─────────┴───────────┴─────────────┴────────────────────┴──────────┴─────────┘
659.9353333333333 ns/iter - https://npmjs.com/cronometro
╔══════════════╤═════════╤═══════════════════╤═══════════╗
║ Slower tests │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ Fastest test │ Samples │ Result │ Tolerance ║
╟──────────────┼─────────┼───────────────────┼───────────╢
║ noop │ 1500 │ 1515299.98 op/sec │ ± 0.72 % ║
╚══════════════╧═════════╧═══════════════════╧═══════════╝
MIT © Evan