Open source platform for the machine learning lifecycle
MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code
into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be
used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you
currently run ML code (e.g. in notebooks, standalone applications or the cloud). MLflow’s current components are:
MLflow Tracking <https://mlflow.org/docs/latest/tracking.html>
_: An API to log parameters, code, andMLflow Projects <https://mlflow.org/docs/latest/projects.html>
_: A code packaging format for reproducibleMLflow Models <https://mlflow.org/docs/latest/models.html>
_: A model packaging format and tools that letMLflow Model Registry <https://mlflow.org/docs/latest/model-registry.html>
_: A centralized model store, set of APIs, and UI, to collaboratively manage the full lifecycle of MLflow Models.|docs| |license| |downloads| |slack| |twitter|
… |docs| image:: https://img.shields.io/badge/docs-latest-success.svg?style=for-the-badge
:target: https://mlflow.org/docs/latest/index.html
:alt: Latest Docs
… |license| image:: https://img.shields.io/badge/license-Apache 2-brightgreen.svg?style=for-the-badge&logo=apache
:target: https://github.com/mlflow/mlflow/blob/master/LICENSE.txt
:alt: Apache 2 License
… |downloads| image:: https://img.shields.io/pypi/dw/mlflow?style=for-the-badge&logo=pypi&logoColor=white
:target: https://pepy.tech/project/mlflow
:alt: Total Downloads
… |slack| image:: https://img.shields.io/badge/[email protected]?logo=slack&logoColor=white&labelColor=3F0E40&style=for-the-badge
:target: Slack
_
:alt: Slack
… |twitter| image:: https://img.shields.io/twitter/follow/MLflow?style=for-the-badge&labelColor=00ACEE&logo=twitter&logoColor=white
:target: https://twitter.com/MLflow
:alt: Account Twitter
Packages
±--------------±------------------------------------------------------------+
| PyPI | |pypi-mlflow| |pypi-skinny| |
±--------------±------------------------------------------------------------+
| conda-forge | |conda-mlflow| |conda-skinny| |
±--------------±------------------------------------------------------------+
| CRAN | |cran-mlflow| |
±--------------±------------------------------------------------------------+
| Maven Central | |maven-client| |maven-parent| |maven-scoring| |maven-spark| |
±--------------±------------------------------------------------------------+
… |pypi-mlflow| image:: https://img.shields.io/pypi/v/mlflow.svg?style=for-the-badge&logo=pypi&logoColor=white&label=mlflow
:target: https://pypi.org/project/mlflow/
:alt: PyPI - mlflow
… |pypi-skinny| image:: https://img.shields.io/pypi/v/mlflow-skinny.svg?style=for-the-badge&logo=pypi&logoColor=white&label=mlflow-skinny
:target: https://pypi.org/project/mlflow-skinny/
:alt: PyPI - mlflow-skinny
… |conda-mlflow| image:: https://img.shields.io/conda/vn/conda-forge/mlflow.svg?style=for-the-badge&logo=anaconda&label=mlflow
:target: https://anaconda.org/conda-forge/mlflow
:alt: Conda - mlflow
… |conda-skinny| image:: https://img.shields.io/conda/vn/conda-forge/mlflow.svg?style=for-the-badge&logo=anaconda&label=mlflow-skinny
:target: https://anaconda.org/conda-forge/mlflow-skinny
:alt: Conda - mlflow-skinny
… |cran-mlflow| image:: https://img.shields.io/cran/v/mlflow.svg?style=for-the-badge&logo=r&label=mlflow
:target: https://cran.r-project.org/package=mlflow
:alt: CRAN - mlflow
… |maven-client| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-client
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-client
:alt: Maven Central - mlflow-client
… |maven-parent| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-parent
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-parent
:alt: Maven Central - mlflow-parent
… |maven-scoring| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-scoring
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-scoring
:alt: Maven Central - mlflow-scoring
… |maven-spark| image:: https://img.shields.io/maven-central/v/org.mlflow/mlflow-parent.svg?style=for-the-badge&logo=apache-maven&label=mlflow-spark
:target: https://mvnrepository.com/artifact/org.mlflow/mlflow-spark
:alt: Maven Central - mlflow-spark
… _Slack: https://mlflow.org/slack
Job Statuses
|examples| |cross-version-tests| |r-devel| |test-requirements| |push-images| |slow-tests| |website-e2e|
… |examples| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/examples.yml.svg?branch=master&event=schedule&label=Examples&style=for-the-badge&logo=github
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/examples.yml?query=workflow%3AExamples+event%3Aschedule
:alt: Examples Action Status
… |cross-version-tests| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/cross-version-tests.yml.svg?branch=master&event=schedule&label=Cross version tests&style=for-the-badge&logo=github
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/cross-version-tests.yml?query=workflow%3A"Cross+version+tests"+event%3Aschedule
… |r-devel| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/r.yml.svg?branch=master&event=schedule&label=r-devel&style=for-the-badge&logo=github
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/r.yml?query=workflow%3AR+event%3Aschedule
… |test-requirements| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/requirements.yml.svg?branch=master&event=schedule&label=test requirements&logo=github&style=for-the-badge
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/requirements.yml?query=workflow%3A"Test+requirements"+event%3Aschedule
… |push-images| image:: https://img.shields.io/github/actions/workflow/status/mlflow/mlflow/push-images.yml.svg?event=release&label=push-images&logo=github&style=for-the-badge
:target: https://github.com/mlflow/mlflow/actions/workflows/push-images.yml?query=event%3Arelease
… |slow-tests| image:: https://img.shields.io/github/actions/workflow/status/mlflow-automation/mlflow/slow-tests.yml.svg?branch=master&event=schedule&label=slow-tests&logo=github&style=for-the-badge
:target: https://github.com/mlflow-automation/mlflow/actions/workflows/slow-tests.yml?query=event%3Aschedule
… |website-e2e| image:: https://img.shields.io/github/actions/workflow/status/mlflow/mlflow-website/e2e.yml.svg?branch=main&event=schedule&label=website-e2e&logo=github&style=for-the-badge
:target: https://github.com/mlflow/mlflow-website/actions/workflows/e2e.yml?query=event%3Aschedule
Install MLflow from PyPI via pip install mlflow
MLflow requires conda
to be on the PATH
for the projects feature.
Nightly snapshots of MLflow master are also available here <https://mlflow-snapshots.s3-us-west-2.amazonaws.com/>
_.
Install a lower dependency subset of MLflow from PyPI via pip install mlflow-skinny
Extra dependencies can be added per desired scenario.
For example, pip install mlflow-skinny pandas numpy
allows for mlflow.pyfunc.log_model support.
Official documentation for MLflow can be found at https://mlflow.org/docs/latest/index.html.
The current MLflow Roadmap is available at https://github.com/mlflow/mlflow/milestone/3. We are
seeking contributions to all of our roadmap items with the help wanted
label. Please see the
Contributing
_ section for more information.
For help or questions about MLflow usage (e.g. “how do I do X?”) see the docs <https://mlflow.org/docs/latest/index.html>
_
or Stack Overflow <https://stackoverflow.com/questions/tagged/mlflow>
_.
To report a bug, file a documentation issue, or submit a feature request, please open a GitHub issue.
For release announcements and other discussions, please subscribe to our mailing list ([email protected])
or join us on Slack
_.
The programs in examples
use the MLflow Tracking API. For instance, run::
python examples/quickstart/mlflow_tracking.py
This program will use MLflow Tracking API <https://mlflow.org/docs/latest/tracking.html>
_,
which logs tracking data in ./mlruns
. This can then be viewed with the Tracking UI.
The MLflow Tracking UI will show runs logged in ./mlruns
at <http://localhost:5000>
_.
Start it with::
mlflow ui
Note: Running mlflow ui
from within a clone of MLflow is not recommended - doing so will
run the dev UI from source. We recommend running the UI from a different working directory,
specifying a backend store via the --backend-store-uri
option. Alternatively, see
instructions for running the dev UI in the contributor guide <CONTRIBUTING.md>
_.
The mlflow run
command lets you run a project packaged with a MLproject file from a local path
or a Git URI::
mlflow run examples/sklearn_elasticnet_wine -P alpha=0.4
mlflow run https://github.com/mlflow/mlflow-example.git -P alpha=0.4
See examples/sklearn_elasticnet_wine
for a sample project with an MLproject file.
To illustrate managing models, the mlflow.sklearn
package can log scikit-learn models as
MLflow artifacts and then load them again for serving. There is an example training application in
examples/sklearn_logistic_regression/train.py
that you can run as follows::
$ python examples/sklearn_logistic_regression/train.py
Score: 0.666
Model saved in run <run-id>
$ mlflow models serve --model-uri runs:/<run-id>/model
$ curl -d '{"dataframe_split": {"columns":[0],"index":[0,1],"data":[[1],[-1]]}}' -H 'Content-Type: application/json' localhost:5000/invocations
Note: If using MLflow skinny (pip install mlflow-skinny
) for model serving, additional
required dependencies (namely, flask
) will need to be installed for the MLflow server to function.
The official MLflow Docker image is available on GitHub Container Registry at https://ghcr.io/mlflow/mlflow.
… code-block:: shell
export CR_PAT=YOUR_TOKEN
echo $CR_PAT | docker login ghcr.io -u USERNAME --password-stdin
# Pull the latest version
docker pull ghcr.io/mlflow/mlflow
# Pull 2.2.1
docker pull ghcr.io/mlflow/mlflow:v2.2.1
We happily welcome contributions to MLflow. We are also seeking contributions to items on the
MLflow Roadmap <https://github.com/mlflow/mlflow/milestone/3>
. Please see our
contribution guide <CONTRIBUTING.md>
to learn more about contributing to MLflow.
MLflow is currently maintained by the following core members with significant contributions from hundreds of exceptionally talented community members.
Ben Wilson <https://github.com/BenWilson2>
_Corey Zumar <https://github.com/dbczumar>
_Daniel Lok <https://github.com/daniellok-db>
_Gabriel Fu <https://github.com/gabrielfu>
_Harutaka Kawamura <https://github.com/harupy>
_Serena Ruan <https://github.com/serena-ruan>
_Weichen Xu <https://github.com/WeichenXu123>
_Yuki Watanabe <https://github.com/B-Step62>
_Tomu Hirata <https://github.com/TomeHirata>
_