Mono open source ECMA CLI, C# and .NET implementation.
Mono is a software platform designed to allow developers to easily
create cross platform applications. It is an open source
implementation of Microsoft’s .NET Framework based on the ECMA
standards for C# and the Common Language Runtime.
The Mono project is part of the .NET Foundation
[!IMPORTANT]
The Mono Project (mono/mono) (‘original mono’) has been an important part of the .NET ecosystem since it was launched in 2001. Microsoft became the steward of the Mono Project when it acquired Xamarin in 2016.The last major release of the Mono Project was in July 2019, with minor patch releases since that time. The last patch release was February 2024.
We are happy to announce that the WineHQ organization will be taking over as the stewards of the Mono Project upstream at wine-mono / Mono · GitLab (winehq.org). Source code in existing mono/mono and other repos will remain available, although repos may be archived. Binaries will remain available for up to four years.
Microsoft maintains a modern fork of Mono runtime in the dotnet/runtime repo and has been progressively moving workloads to that fork. That work is now complete, and we recommend that active Mono users and maintainers of Mono-based app frameworks migrate to .NET which includes work from this fork.
We want to recognize that the Mono Project was the first .NET implementation on Android, iOS, Linux, and other operating systems. The Mono Project was a trailblazer for the .NET platform across many operating systems. It helped make cross-platform .NET a reality and enabled .NET in many new places and we appreciate the work of those who came before us.
Thank you to all the Mono developers!
Join us on Discord in the #monovm
channel:
Legacy Jenkins CI (no longer available publicly):
(cs) = community supported architecture
Please see our guides for building Mono on
Mac OS X,
Linux and
Windows.
Note that building from Git assumes that you already have Mono installed,
so please download and install the latest Mono release
before trying to build from Git. This is required because the Mono build
relies on a working Mono C# compiler to compile itself
(also known as bootstrapping).
If you don’t have a working Mono installation, you can try a slightly
more risky approach: getting the latest version of the ‘monolite’ distribution,
which contains just enough to run the ‘mcs’ compiler. You do this with:
# Run the following line after ./autogen.sh
make get-monolite-latest
This will download and place the files appropriately so that you can then
just run:
make
The build will then use the files downloaded by make get-monolite-latest
.
You can run the mono and mcs test suites with the command: make check
.
Expect to find a few test suite failures. As a sanity check, you
can compare the failures you got with https://jenkins.mono-project.com/.
You can now install mono with: make install
You can verify your installation by using the mono-test-install
script, it can diagnose some common problems with Mono’s install.
Failure to follow these steps may result in a broken installation.
Once you have installed the software, you can run a few programs:
mono program.exe
runtime engine
mcs program.cs
C# compiler
monodis program.exe
CIL Disassembler
See the man pages for mono(1), mcs(1) and monodis(1) for further details.
acceptance-tests/
- Optional third party test suites used to validate Mono against a wider range of test cases.
data/
- Configuration files installed as part of the Mono runtime.
docs/
- Technical documents about the Mono runtime.
external/
- Git submodules for external libraries (Newtonsoft.Json, ikvm, etc).
ikvm-native/
- Glue code for ikvm.
libgc/
- The (deprecated) Boehm GC implementation.
llvm/
- Utility Makefiles for integrating the Mono LLVM fork.
m4/
- General utility Makefiles.
man/
- Manual pages for the various Mono commands and programs.
mcs/
- The class libraries, compiler and tools
class/
- The class libraries (like System.*, Microsoft.Build, etc.)
mcs/
- The Mono C# compiler written in C#
tools/
- Tools like gacutil, ikdasm, mdoc, etc.
mono/
- The core of the Mono Runtime.
arch/
- Architecture specific portions.
benchmark/
- A collection of benchmarks.
btls/
- Build files for the BTLS library which incorporates BoringSSL.
cil/
- Common Intermediate Representation, XML
definition of the CIL bytecodes.
dis/
- CIL executable Disassembler.
eglib/
- Independent implementation of the glib API.
metadata/
- The object system and metadata reader.
mini/
- The Just in Time Compiler.
profiler/
- The profiler implementation.
sgen/
- The SGen Garbage Collector implementation.
tests/
- The main runtime tests.
unit-tests/
- Additional runtime unit tests.
utils/
- Utility functions used across the runtime codebase.
msvc/
- Logic for the MSVC / Visual Studio based runtime and BCL build system.
The latter is experimental at the moment.
packaging/
- Packaging logic for the OS X and Windows Mono packages.
po/
- Translation files.
runtime/
- A directory that contains the Makefiles that link the
mono/ and mcs/ build systems.
samples/
- Some simple sample programs on uses of the Mono
runtime as an embedded library.
scripts/
- Scripts used to invoke Mono and the corresponding program.
support/
- Various support libraries.
tools/
- A collection of tools, mostly used during Mono development.
Before submitting changes to Mono, please review the contribution
guidelines.
Please pay particular attention to the Important
Rules
section.
To submit bug reports, please open an issue on the mono GitHub repo.
Please use the search facility to ensure the same bug hasn’t already
been submitted and follow our
guidelines
on how to make a good bug report.
The following are the configuration options that someone building Mono
might want to use:
--with-sgen=yes,no
- Generational GC support: Used to enable or
disable the compilation of a Mono runtime with the SGen garbage
collector.
mono-boehm
binary and a mono-sgen
binary. mono-boehm
uses Boehm,mono-sgen
uses the Simple Generational GC.--with-libgc=[included, none]
- Selects the default Boehm
garbage collector engine to use.
included: (slightly modified Boehm GC) This is the default
value for the Boehm GC, and it’s the most feature complete, it will
allow Mono to use typed allocations and support the debugger.
none:
Disables the inclusion of a Boehm garbage collector.
This defaults to included
.
--enable-cooperative-suspend
MONO_ENABLE_COOP_SUSPEND
flag.--with-tls=__thread,pthread
Controls how Mono should access thread local storage,
pthread forces Mono to use the pthread APIs, while
__thread uses compiler-optimized access to it.
Although __thread is faster, it requires support from
the compiler, kernel and libc. Old Linux systems do
not support with __thread.
This value is typically pre-configured and there is no
need to set it, unless you are trying to debug a problem.
--with-sigaltstack=yes,no
Experimental: Use at your own risk, it is known to
cause problems with garbage collection and is hard to
reproduce those bugs.
This controls whether Mono will install a special
signal handler to handle stack overflows. If set to
yes
, it will turn stack overflows into the
StackOverflowException. Otherwise when a stack
overflow happens, your program will receive a
segmentation fault.
The configure script will try to detect if your
operating system supports this. Some older Linux
systems do not support this feature, or you might want
to override the auto-detection.
--with-static_mono=yes,no
This controls whether mono
should link against a
static library (libmono.a) or a shared library
(libmono.so).
This defaults to yes
, and will improve the performance
of the mono
program.
This only affects the `mono’ binary, the shared
library libmono.so will always be produced for
developers that want to embed the runtime in their
application.
--with-xen-opt=yes,no
- Optimize code for Xen virtualization.
It makes Mono generate code which might be slightly
slower on average systems, but the resulting executable will run
faster under the Xen virtualization system.
This defaults to yes
.
--with-large-heap=yes,no
- Enable support for GC heaps larger than 3GB.
This only applies only to the Boehm garbage collector, the SGen garbage
collector does not use this configuration option.
This defaults to no
.
--enable-small-config=yes,no
- Enable some tweaks to reduce memory usage
and disk footprint at the expense of some capabilities.
Typically this means that the number of threads that can be created
is limited (256), that the maximum heap size is also reduced (256 MB)
and other such limitations that still make mono useful, but more suitable
to embedded devices (like mobile phones).
This defaults to no
.
--with-ikvm-native=yes,no
- Controls whether the IKVM JNI interface library is
built or not.
This is used if you are planning on
using the IKVM Java Virtual machine with Mono.
This defaults to yes
.
--with-profile4=yes,no
- Whether you want to build the 4.x profile libraries
and runtime.
yes
.--with-libgdiplus=installed,sibling,<path>
- Configure where Mono
searches for libgdiplus when running System.Drawing tests.
It defaults to installed
, which means that the
library is available to Mono through the regular
system setup.
sibling
can be used to specify that a libgdiplus
that resides as a sibling of this directory (mono)
should be used.
Or you can specify a path to a libgdiplus.
--enable-minimal=LIST
Use this feature to specify optional runtime
components that you might not want to include. This
is only useful for developers embedding Mono that
require a subset of Mono functionality.
The list is a comma-separated list of components that
should be removed, these are:
aot
:
Disables support for the Ahead of Time compilation.
attach
:
Support for the Mono.Management assembly and the
VMAttach API (allowing code to be injected into
a target VM)
com
:
Disables COM support.
debug
:
Drop debugging support.
decimal
:
Disables support for System.Decimal.
full_messages
:
By default Mono comes with a full table
of messages for error codes. This feature
turns off uncommon error messages and reduces
the runtime size.
generics
:
Generics support. Disabling this will not
allow Mono to run any 2.0 libraries or
code that contains generics.
jit
:
Removes the JIT engine from the build, this reduces
the executable size, and requires that all code
executed by the virtual machine be compiled with
Full AOT before execution.
large_code
:
Disables support for large assemblies.
logging
:
Disables support for debug logging.
pinvoke
:
Support for Platform Invocation services,
disabling this will drop support for any
libraries using DllImport.
portability
:
Removes support for MONO_IOMAP, the environment
variables for simplifying porting applications that
are case-insensitive and that mix the Unix and Windows path separators.
profiler
:
Disables support for the default profiler.
reflection_emit
:
Drop System.Reflection.Emit support
reflection_emit_save
:
Drop support for saving dynamically created
assemblies (AssemblyBuilderAccess.Save) in
System.Reflection.Emit.
shadow_copy
:
Disables support for AppDomain’s shadow copies
(you can disable this if you do not plan on
using appdomains).
simd
:
Disables support for the Mono.SIMD intrinsics
library.
ssa
:
Disables compilation for the SSA optimization
framework, and the various SSA-based optimizations.
--enable-llvm
This enables the use of LLVM as a code generation engine
for Mono. The LLVM code generator and optimizer will be
used instead of Mono’s built-in code generator for both
Just in Time and Ahead of Time compilations.
See https://www.mono-project.com/docs/advanced/mono-llvm/ for the
full details and up-to-date information on this feature.
You will need to have an LLVM built that Mono can link
against.
--enable-big-arrays
- Enable use of arrays with indexes larger
than Int32.MaxValue.
By default Mono has the same limitation as .NET on
Win32 and Win64 and limits array indexes to 32-bit
values (even on 64-bit systems).
In certain scenarios where large arrays are required,
you can pass this flag and Mono will be built to
support 64-bit arrays.
This is not the default as it breaks the C embedding
ABI that we have exposed through the Mono development
cycle.
--enable-parallel-mark
Use this option to enable the garbage collector to use
multiple CPUs to do its work. This helps performance
on multi-CPU machines as the work is divided across CPUS.
This option is not currently the default on OSX
as it runs into issues there.
This option only applies to the Boehm GC.
--enable-dtrace
--disable-dev-random
Mono uses /dev/random to obtain good random data for
any source that requires random numbers. If your
system does not support this, you might want to
disable it.
There are a number of runtime options to control this
also, see the man page.
--with-csc=roslyn,mcs,default
Use this option to configure which C# compiler to use. By default
the configure script will pick Roslyn, except on platforms where
Roslyn does not work (Big Endian systems) where it will pick mcs.
If you specify “mcs”, then Mono’s C# compiler will be used. This
also allows for a complete bootstrap of Mono’s core compiler and
core libraries from source.
If you specify “roslyn”, then Roslyn’s C# compiler will be used.
This currently uses Roslyn binaries.
--enable-nacl
This configures the Mono compiler to generate code
suitable to be used by Google’s Native Client:
https://code.google.com/p/nativeclient/
Currently this is used with Mono’s AOT engine as
Native Client does not support JIT engines yet.
--enable-wasm
Use this option to configure mono to run on WebAssembly. It will
set both host and target to the WebAssembly triplet. This overrides
the values passed to --host
or --target
and ignored what config.sub guesses.
This is a workaround to enable usage of old automake versions that don’t
recognize the wasm triplet.
Mono references several external git submodules, for example
a fork of Microsoft’s reference source code that has been altered
to be suitable for use with the Mono runtime.
This section describes how to use it.
An initial clone should be done recursively so all submodules will also be
cloned in a single pass:
$ git clone --recursive [email protected]:mono/mono
Once cloned, submodules can be updated to pull down the latest changes.
This can also be done after an initial non-recursive clone:
$ git submodule update --init --recursive
To pull external changes into a submodule:
$ cd <submodule>
$ git pull origin <branch>
$ cd <top-level>
$ git add <submodule>
$ git commit
By default, submodules are detached because they point to a specific commit.
Use git checkout
to move back to a branch before making changes:
$ cd <submodule>
$ git checkout <branch>
# work as normal; the submodule is a normal repo
$ git commit/push new changes to the repo (submodule)
$ cd <top-level>
$ git add <submodule> # this will record the new commits to the submodule
$ git commit
To switch the repo of a submodule (this should not be a common or normal thing
to do at all), first edit .gitmodules
to point to the new location, then:
$ git submodule sync -- <path of the submodule>
$ git submodule update --recursive
$ git checkout <desired new hash or branch>
The desired output diff is a change in .gitmodules
to reflect the
change in the remote URL, and a change in /
the desired change in the commit hash.
See the LICENSE file for licensing information, and the PATENTS.TXT
file for information about Microsoft’s patent grant.
The use of trademarks and logos for Mono can be found here.