openapi

openapi provides an easy-to-use interface for interacting with the OpenAI API in R, allowing users to generate responses to natural language prompts and process them for various tasks.

openapi (OpenAI API)

version
license

openapi is an R interface used to connect with the OpenAI
API
. It enables R users
to call all API methods in the R environment and provides
R6Class for various API returns.

With R6Class, it’s easy to extract and process the return information,
and also beneficial for other R method development.

openapi also offers ChatGPT application in the R environment, which can
be run in the console, Rstudio viewer, browser, or background, to assist
R users in improving their work efficiency.

With openapi, various assistant can be created to help R users in
different tasks such as code writing.

Additionally, these applications are created as Rstudio add-ins, making
it convenient for R users to upload and handle their own code in
ChatGPT.

Installation

if (!require("devtools", quietly = TRUE)) {
  install.packages("devtools")
}
devtools::install_github("zhanghao-njmu/openapi")

Authentication

To use openapi, the api_base and api_key must be provided.

The api_key needs to be generated through one’s own OpenAI account.
The default api_base is
https://api.openai.com, but it can also be
set to other OpenAI API reverse proxy
addresses
.

With api_setup function, one can manually set the api_base and
api_key, and then all functions in openapi do not need to specify
these two parameters.

One can also modify .Rprofile manually, for example, by setting
options(openapi_api_key = api_key) to specify api_key permanently.

library(openapi)

## Official OpenAI API
api_base <- "https://api.openai.com/v1"
api_key <- "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
api_setup(api_base = api_base, api_key = api_key)

## Azure OpenAI API
api_base <- "https://xxxxxx.openai.azure.com"
api_key <- "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
api_setup(
  api_base = api_base, api_key = api_key,
  api_type = "azure", azure_deployment = "openai/deployments/[your_deployment_name]", api_version = "2023-03-15-preview"
)

ChatGPT

Interact with chatGPT on the console

q <- ChatGPT$new()
q$chat("What is Bioinformatics?")
q$chat("Application?")
q$regenerate()
q$first()
q$forward()
q$forward()
q$last()
q$messages
q$latest_response

ChatGPT_console

Interact with chatGPT within the RStudio’s viewer pane

Start in the current session

ChatGPT_gadget()
ChatGPT_gadget(viewer = shiny::dialogViewer("chatgpt", width = 800, height = 1000))
ChatGPT_gadget(viewer = shiny::browserViewer())

ChatGPT_console

Start as background job

ChatGPT_job()

ChatGPT_console

R code assistant

code <- "
truncate_text <- function(text, max_length = 50) {
  truncated_text <- sapply(text, function(x) {
    if (nchar(x) > max_length) {
      paste0(substr(x, 1, max_length - 3), \"...(\", nchar(x) - max_length, \" characters omitted)\")
    } else {
      x
    }
  })
  return(truncat_text)
}
"
edited <- code_check(code)
edited$extract("difference")
edited$extract("output")
edited$response

ChatGPT_console

Othe functions

edited <- code_document(code)
edited <- code_comment(code)
edited <- code_explain(code)
edited <- code_improve(code)
edited <- code_refactor(code)
edited <- code_create_test(code)

Rstudio Addins

  • ChatGPT

  • ChatGPT (background job)

  • Quote selection

  • Document selection

  • Check selection

  • Improve selection

  • Comment selection

  • Refactor selection

  • Explain selection

  • Create test units for selection

    Prompts

prompts_en <- fetch_prompts(language = "en")
prompts_zh <- fetch_prompts(language = "zh")
prompts_new <- generate_prompts("Act as an R Package Development Assistant")

OpenAI API

Models

models <- list_models()
models$print()
models$extract(field = "id", filter = list(owned_by = "openai-internal"))

gpt <- retrieve_model(model = "gpt-3.5-turbo")
gpt$print()
gpt$extract("permission")

Text completion

comp <- create_completion(prompt = "Who won the world series in 2020?")
comp$print()
comp$extract(field = "choices")
edit$extract(field = "model")

Chat completion

messages <- list(
  list(
    "role" = "system",
    "content" = "You are a helpful assistant."
  ),
  list(
    "role" = "user",
    "content" = "Who won the world series in 2020?"
  ),
  list(
    "role" = "assistant",
    "content" = "The Los Angeles Dodgers won the World Series in 2020."
  ),
  list(
    "role" = "user",
    "content" = "Where was it played?"
  )
)
chat <- create_chat_completion(messages = messages, stream = TRUE)
chat$print()
chat$extract(field = "choices")
chat$extract(field = "model")

Edit

edit <- create_edit(input = "What day of the wek is it?", instruction = "Fix the spelling mistakes")
edit$print()
edit$extract(field = "choices")
edit$extract(field = "model")

Embedding

emb <- create_embeddings(input = "The food was delicious and the waiter...")
emb$print()
emb$extract("embedding")

Images

image <- create_image(prompt = "A magpie standing on the green grassland", n = 1, size = "512x512")
fetch_image(image$extract("url"), destfile = "magpie.png")
mask_image(image = "magpie.png", height_range = c(1, 100), destfile = "magpie_edit.png")
mask_image(image = "magpie.png", G_range = c(0.6, 1), destfile = "magpie_edit.png")

image_edit <- create_image_edit(image = "magpie_edit.png", prompt = "A magpie standing on the snowy ground")
fetch_image(image_edit$extract("url"))

image_variation <- create_image_variation(image = "magpie.png")
fetch_image(image_variation$extract("url"))

More applications are waiting to be developed …