A package that extracts Persian time and date markers by applying regexes -- AACL 2022
Parstdex (knwon as HengamTagger in our paper at aacl) is a rule-based Persian temporal extractor built on top of regular expressions specifying pattern units and patterns that can match temporal expressions.
pip install parstdex
from parstdex import Parstdex
model = Parstdex()
sentence = """ماریا شنبه عصر راس ساعت ۱۷ و بیست و سه دقیقه به نادیا زنگ زد اما تا سه روز بعد در تاریخ ۱۸ شهریور سال ۱۳۷۸ ه.ش. خبری از نادیا نشد"""
model.extract_span(sentence)
output :
{"datetime": [[6, 47], [68, 78], [82, 111]], "date": [[6, 10], [68, 78], [82, 111]], "time": [[11, 47]]}
model.extract_marker(sentence)
{
"datetime":{
"[6, 47]":"شنبه عصر راس ساعت ۱۷ و بیست و سه دقیقه به",
"[68, 78]":"سه روز بعد",
"[82, 111]":"تاریخ ۱۸ شهریور سال ۱۳۷۸ ه.ش."
},
"date":{
"[6, 10]":"شنبه",
"[68, 78]":"سه روز بعد",
"[82, 111]":"تاریخ ۱۸ شهریور سال ۱۳۷۸ ه.ش."
},
"time":{
"[11, 47]":"عصر راس ساعت ۱۷ و بیست و سه دقیقه به"
}
}
model.extract_time_ml(sentence)
output :
ماریا
<TIMEX3 type='DATE'>
شنبه
</TIMEX3>
<TIMEX3 type='TIME'>
عصر راس ساعت ۱۷ و بیست و سه دقیقه به
</TIMEX3>
نادیا زنگ زد اما
<TIMEX3 type='DURATION'>
تا سه روز بعد
</TIMEX3>
در
<TIMEX3 type='DATE'>
تاریخ ۱۸ شهریور سال ۱۳۷۸ ه.ش.
</TIMEX3>
خبری از نادیا نشد
model.extract_ner(sentence, mode="dattim")
output :
[
("ماریا", "O"),
("شنبه", "B-DAT"),
("عصر", "B-TIM"),
("راس", "I-TIM"),
("ساعت", "I-TIM"),
("۱۷", "I-TIM"),
("و", "I-TIM"),
("بیست", "I-TIM"),
("و", "I-TIM"),
("سه", "I-TIM"),
("دقیقه", "I-TIM"),
("به", "I-TIM"),
("نادیا", "O"),
("زنگ", "O"),
("زد", "O"),
("اما", "O"),
("تا", "B-DAT"),
("سه", "I-DAT"),
("روز", "I-DAT"),
("بعد", "I-DAT"),
("در", "I-DAT"),
("تاریخ", "I-DAT"),
("۱۸", "I-DAT"),
("شهریور", "I-DAT"),
("سال", "I-DAT"),
("۱۳۷۸", "I-DAT"),
("ه", "I-DAT"),
(".", "I-DAT"),
("ش", "I-DAT"),
(".", "I-DAT"),
("خبری", "O"),
("از", "O"),
("نادیا", "O"),
("نشد", "O"),
]
model.extract_ner(sentence, mode="tmp")
output :
[
("ماریا", "O"),
("شنبه", "B-TMP"),
("عصر", "I-TMP"),
("راس", "I-TMP"),
("ساعت", "I-TMP"),
("۱۷", "I-TMP"),
("و", "I-TMP"),
("بیست", "I-TMP"),
("و", "I-TMP"),
("سه", "I-TMP"),
("دقیقه", "I-TMP"),
("به", "I-TMP"),
("نادیا", "O"),
("زنگ", "O"),
("زد", "O"),
("اما", "O"),
("تا", "B-TMP"),
("سه", "I-TMP"),
("روز", "I-TMP"),
("بعد", "I-TMP"),
("در", "I-TMP"),
("تاریخ", "I-TMP"),
("۱۸", "I-TMP"),
("شهریور", "I-TMP"),
("سال", "I-TMP"),
("۱۳۷۸", "I-TMP"),
("ه", "I-TMP"),
(".", "I-TMP"),
("ش", "I-TMP"),
(".", "I-TMP"),
("خبری", "O"),
("از", "O"),
("نادیا", "O"),
("نشد", "O"),
]
Parstdex architecture is very flexible and scalable and therefore suggests an easy solution to adapt to new patterns which haven’t been considered yet.
├── parstdex
│ └── utils
| | └── annotation
| | | └── ...
| | └── pattern
| | | └── ...
| | └── special_words
| | | └── words.txt
| | └── const.py
| | └── normalizer.py
| | └── pattern_to_regex.py
| | └── deprecation.py
| | └── regex_tool.py
| | └── spans.py
| | └── tokenizer.py
| └── marker_extractor.py
| └── settings.py
└── Test
│ └── data.json
| └── test_parstdex.py
|
└── examples.py
└── performance_test.ipynb
└── requirement.txt
└── setup.py
Executable codes and performance test results are accessible on google colab.
The average time required to obtain temporal expressions is 6 ms
. This test was conducted using 264 sentences with an average length of 50 characters that covered all of the patterns.
Please feel free to provide us with any feedback or suggestions. You can find more information on how to contribute to Parstdex by reading the
contribution document.
If you use any part of this repository in your research, please cite it using the following BibTex entry.
@inproceedings{mirzababaei-etal-2022-hengam,
title = {Hengam: An Adversarially Trained Transformer for {P}ersian Temporal Tagging},
author = {Mirzababaei, Sajad and Kargaran, Amir Hossein and Sch{\"u}tze, Hinrich and Asgari, Ehsaneddin},
year = 2022,
booktitle = {Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing},
publisher = {Association for Computational Linguistics},
address = {Online only},
pages = {1013--1024},
url = {https://aclanthology.org/2022.aacl-main.74}
}