Python ETL framework for stream processing, real-time analytics, LLM pipelines, and RAG.
Getting Started |
Deployment |
Documentation and Support |
Blog |
License
Pathway is a Python ETL framework for stream processing, real-time analytics, LLM pipelines, and RAG.
Pathway comes with an easy-to-use Python API, allowing you to seamlessly integrate your favorite Python ML libraries.
Pathway code is versatile and robust: you can use it in both development and production environments, handling both batch and streaming data effectively.
The same code can be used for local development, CI/CD tests, running batch jobs, handling stream replays, and processing data streams.
Pathway is powered by a scalable Rust engine based on Differential Dataflow and performs incremental computation.
Your Pathway code, despite being written in Python, is run by the Rust engine, enabling multithreading, multiprocessing, and distributed computations.
All the pipeline is kept in memory and can be easily deployed with Docker and Kubernetes.
You can install Pathway with pip:
pip install -U pathway
For any questions, you will find the community and team behind the project on Discord.
Ready to see what Pathway can do?
Try one of our easy-to-run examples!
Available in both notebook and docker formats, these ready-to-launch examples can be launched in just a few clicks. Pick one and start your hands-on experience with Pathway today!
With its unified engine for batch and streaming and its full Python compatibility, Pathway makes data processing as easy as possible. It’s the ideal solution for a wide range of data processing pipelines, including:
Pathway provides dedicated LLM tooling to build LLM and RAG pipelines. Wrappers for most common LLM services and utilities are included, making working with LLMs and RAGs pipelines incredibly easy. Check out our LLM xpack documentation.
Don’t hesitate to try one of our runnable examples featuring LLM tooling.
You can find such examples here.
Pathway requires Python 3.10 or above.
You can install the current release of Pathway using pip
:
$ pip install -U pathway
⚠️ Pathway is available on MacOS and Linux. Users of other systems should run Pathway on a Virtual Machine.
import pathway as pw
# Define the schema of your data (Optional)
class InputSchema(pw.Schema):
value: int
# Connect to your data using connectors
input_table = pw.io.csv.read(
"./input/",
schema=InputSchema
)
#Define your operations on the data
filtered_table = input_table.filter(input_table.value>=0)
result_table = filtered_table.reduce(
sum_value = pw.reducers.sum(filtered_table.value)
)
# Load your results to external systems
pw.io.jsonlines.write(result_table, "output.jsonl")
# Run the computation
pw.run()
Run Pathway in Google Colab.
You can find more examples here.
To use Pathway, you only need to import it:
import pathway as pw
Now, you can easily create your processing pipeline, and let Pathway handle the updates. Once your pipeline is created, you can launch the computation on streaming data with a one-line command:
pw.run()
You can then run your Pathway project (say, main.py
) just like a normal Python script: $ python main.py
.
Pathway comes with a monitoring dashboard that allows you to keep track of the number of messages sent by each connector and the latency of the system. The dashboard also includes log messages.
Alternatively, you can use the pathway’ish version:
$ pathway spawn python main.py
Pathway natively supports multithreading.
To launch your application with 3 threads, you can do as follows:
$ pathway spawn --threads 3 python main.py
To jumpstart a Pathway project, you can use our cookiecutter template.
You can easily run Pathway using docker.
You can use the Pathway docker image, using a Dockerfile:
FROM pathwaycom/pathway:latest
WORKDIR /app
COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD [ "python", "./your-script.py" ]
You can then build and run the Docker image:
docker build -t my-pathway-app .
docker run -it --rm --name my-pathway-app my-pathway-app
When dealing with single-file projects, creating a full-fledged Dockerfile
might seem unnecessary. In such scenarios, you can execute a
Python script directly using the Pathway Docker image. For example:
docker run -it --rm --name my-pathway-app -v "$PWD":/app pathwaycom/pathway:latest python my-pathway-app.py
You can also use a standard Python image and install Pathway using pip with a Dockerfile:
FROM --platform=linux/x86_64 python:3.10
RUN pip install -U pathway
COPY ./pathway-script.py pathway-script.py
CMD ["python", "-u", "pathway-script.py"]
Docker containers are ideally suited for deployment on the cloud with Kubernetes.
If you want to scale your Pathway application, you may be interested in our Pathway for Enterprise.
Pathway for Enterprise is specially tailored towards end-to-end data processing and real time intelligent analytics.
It scales using distributed computing on the cloud and supports distributed Kubernetes deployment, with external persistence setup.
You can easily deploy Pathway using services like Render: see how to deploy Pathway in a few clicks.
If you are interested, don’t hesitate to contact us to learn more.
Pathway is made to outperform state-of-the-art technologies designed for streaming and batch data processing tasks, including: Flink, Spark, and Kafka Streaming. It also makes it possible to implement a lot of algorithms/UDF’s in streaming mode which are not readily supported by other streaming frameworks (especially: temporal joins, iterative graph algorithms, machine learning routines).
If you are curious, here are some benchmarks to play with.
The entire documentation of Pathway is available at pathway.com/developers/, including the API Docs.
If you have any question, don’t hesitate to open an issue on GitHub, join us on Discord, or send us an email at [email protected].
Pathway is distributed on a BSL 1.1 License which allows for unlimited non-commercial use, as well as use of the Pathway package for most commercial purposes, free of charge. Code in this repository automatically converts to Open Source (Apache 2.0 License) after 4 years. Some public repos which are complementary to this one (examples, libraries, connectors, etc.) are licensed as Open Source, under the MIT license.
If you develop a library or connector which you would like to integrate with this repo, we suggest releasing it first as a separate repo on a MIT/Apache 2.0 license.
For all concerns regarding core Pathway functionalities, Issues are encouraged. For further information, don’t hesitate to engage with Pathway’s Discord community.