Mirror of the PipeWire repository (see https://gitlab.freedesktop.org/pipewire/pipewire/)
PipeWire is a server and user space API to
deal with multimedia pipelines. This includes:
Nodes in the graph can be implemented as separate processes,
communicating with sockets and exchanging multimedia content using fd
passing.
The preferred way to install PipeWire is to install it with your
distribution package system. This ensures PipeWire is integrated
into the rest of your system for the best experience.
If you want to build and install PipeWire yourself, refer to
install for instructions.
The most important purpose of PipeWire is to run your favorite apps.
Some applications use the native PipeWire API, such as most compositors
(gnome-shell, wayland, …) to implement screen sharing. These apps will
just work automatically.
Most audio applications can use either ALSA, JACK or PulseAudio as a
backend. PipeWire provides support for all 3 backends. Depending on how
your distribution has configured things this should just work automatically
or with the provided scripts shown below.
PipeWire can use environment variables to control the behaviour of
applications:
PIPEWIRE_DEBUG=<level>
to increase the debug level (or use one ofXEWIDT
for none, error, warnings, info,PIPEWIRE_LOG=<filename>
to redirect log to filenamePIPEWIRE_LOG_SYSTEMD=false
to disable logging to systemd journalPIPEWIRE_LATENCY=<num/denom>
to configure latency as a fraction. 10/1000PIPEWIRE_RATE=<num/denom>
to configure a rate for the graph.PIPEWIRE_QUANTUM=<num/denom>
to configure latency as a fraction and adenom
and force the specified num
as the buffer size.PIPEWIRE_NODE=<id>
to request a link to the specified node. Thepw-cat
can be used to play and record audio and midi. Use pw-cat -h
to get
some more help. There are some aliases like pw-play
and pw-record
to make
things easier:
$ pw-play /home/wim/data/01.\ Firepower.wav
Depending on how the system was configured, you can either run PipeWire and
JACK side-by-side or have PipeWire take over the functionality of JACK
completely.
In dual mode, JACK apps will by default use the JACK server. To direct a JACK
app to PipeWire, you can use the pw-jack
script like this:
$ pw-jack <appname>
If you replaced JACK with PipeWire completely, pw-jack
does not have any
effect and can be omitted.
JACK applications will automatically use the buffer-size chosen by the
server. You can force a maximum buffer size (latency) by setting the
PIPEWIRE_LATENCY
environment variable like so:
PIPEWIRE_LATENCY=128/48000 jack_simple_client
Requests the jack_simple_client
to run with a buffer of 128 or
less samples.
PipeWire can run a PulseAudio compatible replacement server. You can’t
use both servers at the same time. Usually your package manager will
make the server conflict so that you can only install one or the
other.
PulseAudio applications still use the regular PulseAudio client
libraries and you don’t need to do anything else than change the
server implementation.
A successful swap of the server can be verified by checking the
output of
pactl info
It should include the string:
...
Server Name: PulseAudio (on PipeWire 0.3.x)
...
You can use pavucontrol to change profiles and ports, change volumes
or redirect streams, just like with PulseAudio.
If the PipeWire alsa module is installed, it can be seen with
$ aplay -L
ALSA applications can then use the pipewire:
device to use PipeWire
as the audio system.
PipeWire includes 2 GStreamer elements called pipewiresrc
and
pipewiresink
. They can be used in pipelines such as this:
$ gst-launch-1.0 pipewiresrc ! videoconvert ! autovideosink
Or to play a beeping sound:
$ gst-launch-1.0 audiotestsrc ! pipewiresink
PipeWire provides a device monitor as well so that
$ gst-device-monitor-1.0
shows the PipeWire devices and applications like cheese will
automatically use the PipeWire video source when possible.
To inspect and manipulate the PipeWire graph via GUI, you can use Helvum.
Alternatively, you can use use one of the excellent JACK tools, such as Carla
,
catia
, qjackctl
, …
However, you will not be able to see all features like the video
ports.
pw-mon
dumps and monitors the state of the PipeWire daemon.
pw-dot
can dump a graph of the pipeline, check out the help for
how to do this.
pw-top
monitors the real-time status of the graph. This is handy to
find out what clients are running and how much DSP resources they
use.
pw-dump
dumps the state of the PipeWire daemon in JSON format. This
can be used to find out the properties and parameters of the objects
in the PipeWire daemon.
There is a more complicated tool to inspect the state of the server
with pw-cli
. This tool can be used interactively or it can execute
single commands like this to get the server information:
$ pw-cli info 0
Find tutorials and design documentation here.
The (incomplete) autogenerated API docs are here.
The Wiki can be found here
PipeWire is Free Software and is developed in the open. It is mostly
licensed under the MIT license. Check LICENSE for
more details about the exceptions.
Contributors are encouraged to submit merge requests or file bugs on
gitlab.
Join us on IRC at #pipewire on OFTC.
We adhere to the Contributor Covenant for our code of conduct.
You can ask for help on the IRC channel (see above). You can also ask
questions by raising
a gitlab issue.