:globe_with_meridians: A Python wrapper for the Geocodio geolocation service API
… image:: https://badge.fury.io/py/pygeocodio.svg
:target: http://badge.fury.io/py/pygeocodio
… image:: https://github.com/bennylope/pygeocodio/actions/workflows/tests.yml/badge.svg?branch=master
:target: https://github.com/bennylope/pygeocodio/actions
… image:: https://img.shields.io/pypi/dm/pygeocodio.svg
:target: https://img.shields.io/pypi/dm/pygeocodio.svg
Python wrapper for Geocodio geocoding API <http://geocod.io/docs/>
_.
Full documentation on Read the Docs <http://pygeocodio.readthedocs.org/en/latest/>
_.
If you are upgrading from a version prior to 0.2.0 please see the changelog
in HISTORY.rst. The default coordinate ordering has changed to something a bit
more sensible for most users.
The service is limited to U.S. and Canada addresses for the time being.
Read the complete Geocodio documentation <http://geocod.io/docs/>
_ for
service documentation.
pygeocodio requires requests
1.0.0 or greater and will ensure requests is
installed::
pip install pygeocodio
Import the API client and ensure you have a valid API key::
>>> from geocodio import GeocodioClient
>>> client = GeocodioClient(YOUR_API_KEY)
Note that you can pass in a timeout value in seconds (the default is no timeout)::
>>> client = GeocodioClient(YOUR_API_KEY, timeout=15)
Geocoding an individual address::
>>> geocoded_location = client.geocode("42370 Bob Hope Drive, Rancho Mirage CA")
>>> geocoded_location.coords
(33.738987255507, -116.40833849559)
Geocode a set of address components::
>>> geocoded_location = client.geocode(components_data={
"postal_code": "02210",
"country": "US"
})
>>> geocoded_location.coords
(42.347547, -71.040645)
You can also geocode a list of addresses::
>>> geocoded_addresses = client.geocode([
'2 15th St NW, Washington, DC 20024',
'3101 Patterson Ave, Richmond, VA, 23221'
])
Return a list of just the coordinates for the resultant geocoded addresses::
>>> geocoded_addresses.coords
[(38.890083, -76.983822), (37.560446, -77.476008)]
>>> geocoded_addresses[0].coords
(38.890083, -76.983822)
Lookup an address by the queried address::
>>> geocoded_addresses.get('2 15th St NW, Washington, DC 20024').coords
(38.879138, -76.981879))
You can also geocode a list of address component dictionaries::
>>> geocoded_addresses = client.geocode(components_data=[{
'street': '1109 N Highland St',
'city': 'Arlington',
'state': 'VA'
}, {
'city': 'Toronto',
'country': 'CA'
}])
And geocode a keyed mapping of address components::
>>> gecoded_addresses = client.geocode(components_data={
"1": {
"street": "1109 N Highland St",
"city": "Arlington",
"state": "VA"
},
"2": {
"city": "Toronto",
"country": "CA"
}})
And geocode even a keyed mapping of addresses::
>>> geocoded_addresses = client.geocode({
"1": "3101 patterson ave, richmond, va",
"2": "1657 W Broad St, Richmond, VA"
})
Return a list of just the coordinates for the resultant geocoded addresses::
>>> geocoded_addresses.coords
{'1': (37.560454, -77.47601), '2': (37.555176, -77.458273)}
Lookup an address by its key::
>>> geocoded_addresses.get("1").coords
(37.560454, -77.47601)
And if you just want to parse an individual address into its components::
client.parse(‘1600 Pennsylvania Ave, Washington DC’)
{
“address_components”: {
“number”: “1600”,
“street”: “Pennsylvania”,
“suffix”: “Ave”,
“city”: “Washington”,
“state”: “DC”
},
“formatted_address”: “1600 Pennsylvania Ave, Washington DC”
}
Reverse geocode a point to find a matching address::
>>> location = client.reverse((33.738987, -116.4083))
>>> location.formatted_address
"42370 Bob Hope Dr, Rancho Mirage CA, 92270"
And multiple points at a time::
>>> locations = client.reverse([
(33.738987, -116.4083),
(33.738987, -116.4083),
(38.890083, -76.983822)
])
Return the list of formatted addresses::
>>> locations.formatted_addresses
["42370 Bob Hope Dr, Rancho Mirage CA, 92270", "42370 Bob Hope Dr, Rancho Mirage CA, 92270", "2 15th St NW, Washington, DC 20024"]
Access a specific address by the queried point tuple::
>>> locations.get("38.890083,-76.983822").formatted_address
"2 15th St NW, Washington, DC 20024"
Or by the more natural key of the queried point tuple::
>>> locations.get((38.890083, -76.983822)).formatted_address
"2 15th St NW, Washington, DC 20024"
In the works!
For complete documentation see the docs <http://pygeocodio.readthedocs.org/en/latest/>
_.
BSD License