README file generator, powered by AI.
Designed for simplicity, customization, and developer productivity.
[!IMPORTANT]
✨ Visit the Official Documentation for detailed guides and tutorials.
README-AI is a developer tool that automatically generates README markdown files using a robust repository processing engine and advanced language models. Simply provide a URL or path to your codebase, and a well-structured and detailed README will be generated.
Why README-AI?
This tool is designed to streamline the documentation process for developers, saving time and effort while ensuring high-quality README files. Key benefits include:
Running from the command line:
Running directly in your browser:
OpenAI
, Ollama
, Anthropic
, Google Gemini
.Let’s take a look at some possible customizations created by readme-ai:
--image custom --badge-color FF4B4B --badge-style flat-square --header-style classic
|
|
--badge-color 00ADD8 --badge-style for-the-badge --header-style modern --toc-style roman
|
|
--header-style ascii
|
|
--badge-style for-the-badge --header-style svg
|
|
--align left --badge-style flat-square --image cloud
|
--align left --badge-style flat --image gradient
|
--badge-style flat --image custom
|
--badge-style skills-light --image grey
|
--badge-style flat-square
|
--badge-style flat --image black
|
--image cloud --header-style compact --toc-style fold
|
|
-i custom -bc BA0098 -bs flat-square -hs modern -ts fold
|
[!IMPORTANT]
See the Official Documentation for more information on customization options and best practices.
Next, let’s explore the key sections of a typical README generated by readme-ai.
Overview ◎ High-level introduction of the project, focused on the value proposition and use-cases, rather than technical aspects. |
Features Table ◎ Generated markdown table that highlights the key technical features and components of the codebase. This table is generated using a structured prompt template. |
Directory Tree ◎ The project's directory structure is generated using pure Python and embedded in the README. See readmeai.generators.tree. for more details. |
File Summaries ◎ Summarizes key modules of the project, which are also used as context for downstream prompts. |
Getting Started Guides ◎ Prerequisites and system requirements are extracted from the codebase during preprocessing. The parsers handles the majority of this logic currently. |
Installation Guide ◎ |
Contributing Guide ◎ Dropdown section that outlines general process for contributing to your project. ◎ Provides links to your contributing guidelines, issues page, and more resources. ◎ Graph of contributors is also included. |
Additional Sections ◎ |
3.9
or higherThe readmeai
CLI can retrieve source code from the following Git hosting services or your local file system:
Platform | Description | Resource |
---|---|---|
File System | Access repositories on your machine | Learn more |
GitHub | World’s largest code hosting platform | GitHub.com |
GitLab | Complete DevOps platform | GitLab.com |
Bitbucket | Atlassian’s Git solution | Bitbucket.org |
To unlock the full potential of readmeai
, you’ll need an account and API key from one of the providers below:
Provider | Description | Resource |
---|---|---|
OpenAI | Recommended for general use | OpenAI Developer quickstart |
Anthropic | Advanced language models | Anthropic Developer docs |
Google Gemini | Google’s multimodal AI model | Gemini API quickstart |
Ollama | Free and open-source (No API key required) | Ollama GitHub repository |
Offline Mode | Run readmeai without a LLM API |
Example offline mode README |
Choose your preferred installation method:
Recommended method for most users:
❯ pip install readmeai
Use pipx to use readmeai
in an isolated environment, ensuring no dependency conflicts with other Python projects:
❯ pipx install readmeai
Use uv for the fastest way to install readmeai
with a single command:
❯ uv tool install readmeai
To run readmeai
in a containerized environment, pull latest Docker image from Docker Hub:
❯ docker pull zeroxeli/readme-ai:latest
Clone the repository:
❯ git clone https://github.com/eli64s/readme-ai
Navigate to the readme-ai
directory:
❯ cd readme-ai
Install dependencies:
❯ pip install -r setup/requirements.txt
Alternatively, the project can be setup using the bash script below:
Run the setup script:
❯ bash setup/setup.sh
Or, use poetry
to build the project:
Install dependencies using Poetry:
❯ poetry install
[!IMPORTANT]
To use the Anthropic and Google Gemini clients, extra dependencies are required. Install the package with the following extras:
Anthropic:
❯ pip install "readmeai[anthropic]"
Google Gemini:
❯ pip install "readmeai[google-generativeai]"
Install Multiple Clients:
❯ pip install "readmeai[anthropic,google-generativeai]"
1. Set Up Environment Variables
With OpenAI:
❯ export OPENAI_API_KEY=<your_api_key>
# Or for Windows users:
❯ set OPENAI_API_KEY=<your_api_key>
Refer to the Ollama documentation for more information on setting up the Ollama API. Here is a basic example:
Pull your model of choice from the Ollama repository:
❯ ollama pull mistral:latest
Start the Ollama server and set the OLLAMA_HOST
environment variable:
❯ export OLLAMA_HOST=127.0.0.1 && ollama serve
Export your Anthropic API key:
❯ export ANTHROPIC_API_KEY=<your_api_key>
Export your Google Gemini API key:
❯ export GOOGLE_API_KEY=<your_api_key
2. Generate a README
Run the following command, replacing the repository URL with your own:
❯ readmeai --repository https://github.com/eli64s/readme-ai --api openai
[!IMPORTANT]
By default, thegpt-3.5-turbo
model is used. Higher costs may be incurred when more advanced models.
Run with Ollama
and set llama3
as the model:
❯ readmeai --api ollama --model llama3 --repository https://github.com/eli64s/readme-ai
Run with Anthropic
:
❯ readmeai --api anthropic -m claude-3-5-sonnet-20240620 -r https://github.com/eli64s/readme-ai
Run with Google Gemini
:
❯ readmeai --api gemini -m gemini-1.5-flash -r https://github.com/eli64s/readme-ai
Use a local
directory path:
readmeai --repository /path/to/your/project
Add more customization options:
❯ readmeai --repository https://github.com/eli64s/readme-ai \
--output readmeai.md \
--api openai \
--model gpt-4 \
--badge-color A931EC \
--badge-style flat-square \
--header-style compact \
--toc-style fold \
--temperature 0.9 \
--tree-depth 2
--image LLM \
--emojis
Run the Docker container with the OpenAI client:
❯ docker run -it --rm \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-v "$(pwd)":/app zeroxeli/readme-ai:latest \
--repository https://github.com/eli64s/readme-ai \
--api openai
If you installed the project from source with the bash script, run the following command:
Activate the virtual environment:
❯ conda activate readmeai
Run the CLI:
❯ python3 -m readmeai.cli.main -r https://github.com/eli64s/readme-ai
Activate the virtual environment:
❯ poetry shell
Run the CLI:
❯ poetry run python3 -m readmeai.cli.main -r https://github.com/eli64s/readme-ai
Try readme-ai directly in your browser, no installation required. See the readme-ai-streamlit repository for more details.
The pytest and nox frameworks are used for development and testing.
Install the dependencies using Poetry:
❯ poetry install --with dev,test
Run the unit test suite using Pytest:
❯ make test
Run the test suite against Python 3.9, 3.10, 3.11, and 3.12 using Nox:
❯ make test-nox
[!TIP]
Nox is an automation tool that automates testing in multiple Python environments. It is used to ensure compatibility across different Python versions.
Customize your README generation using these CLI options:
Option | Description | Default |
---|---|---|
--align |
Text alignment in header | center |
--api |
LLM API service provider | offline |
--badge-color |
Badge color name or hex code | 0080ff |
--badge-style |
Badge icon style type | flat |
--header-style |
Header template style | classic |
--toc-style |
Table of contents style | bullet |
--emojis |
Adds emojis to the README header sections | False |
--image |
Project logo image | blue |
--model |
Specific LLM model to use | gpt-3.5-turbo |
--output |
Output filename | readme-ai.md |
--repository |
Repository URL or local directory path | None |
--temperature |
Creativity level for content generation | 0.1 |
--tree-depth |
Maximum depth of the directory tree structure | 2 |
Run the following command to view all available options:
❯ readmeai --help
Visit the Official Documentation for more detailed information on configuration options, examples, and best practices.
View example README files generated by readme-ai across various Tech Stacks:
Technology | Example Output | Repository | Description |
---|---|---|---|
Readme-ai | readme-ai.md | readme-ai | Readme-ai project |
Apache Flink | readme-pyflink.md | pyflink-poc | Pyflink project |
Streamlit | readme-streamlit.md | readme-ai-streamlit | Streamlit web app |
Vercel & NPM | readme-vercel.md | github-readme-quotes | Vercel deployment |
Go & Docker | readme-docker-go.md | docker-gs-ping | Dockerized Go app |
FastAPI & Redis | readme-fastapi-redis.md | async-ml-inference | Async ML inference service |
Java | readme-java.md | Minimal-Todo | Minimalist todo Java app |
PostgreSQL & DuckDB | readme-postgres.md | Buenavista | Postgres proxy server |
Kotlin | readme-kotlin.md | android-client | Android client app |
Offline Mode | offline-mode.md | litellm | LLM API service |
Find additional README examples in the examples directory.
readmeai 1.0.0
with enhanced documentation management features.Vscode Extension
to generate README files directly in the editor.GitHub Actions
to automate documentation updates.badge packs
to provide additional badge styles and options.
Contributions are welcome! Please read the Contributing Guide to get started.
Copyright © 2023 readme-ai.
Released under the MIT License.