Python cache interface with clean API and built-in memcache & redis + asyncio support.
… image:: https://badges.gitter.im/ring-cache/community.svg
:alt: Join the chat at https://gitter.im/ring-cache/community
:target: https://gitter.im/ring-cache/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
… image:: https://github.com/youknowone/ring/actions/workflows/python-package.yml/badge.svg
… image:: https://codecov.io/gh/youknowone/ring/graph/badge.svg
:target: https://codecov.io/gh/youknowone/ring
Let’s concentrate on code, not on storages.
Ring shows a way to control cache in point of view of code - not about storages.
Ring’s decorator is convenient but also keeps fluency for general scenarios.
asyncio support for Python3.5+!
Take advantage of perfectly explicit and fully automated cache interface.
Ring decorators convert your functions to cached version of them, with extra
control methods.
Full documentation with examples and references:
<http://ring-cache.readthedocs.io/>
_
… code:: python
import ring
import memcache
import requests
mc = memcache.Client(['127.0.0.1:11211'])
# working for mc, expire in 60sec
@ring.memcache(mc, time=60)
def get_url(url):
return requests.get(url).content
# normal way - it is cached
data = get_url('http://example.com')
It is a normal smart cache flow.
But ring is different when you want to explicitly control it.
… code:: python
# delete the cache
get_url.delete('http://example.com')
# get cached data or None
data_or_none = get_url.get('http://example.com')
# get internal cache key
key = get_url.key('http://example.com')
# and access directly to the backend
direct_data = mc.get(key)
… code:: python
import ring
import redis
rc = redis.StrictRedis()
class User(dict):
def __ring_key__(self):
return self['id']
# working for rc, no expiration
# using json coder for non-bytes cache data
@ring.redis(rc, coder='json')
def data(self):
return self.copy()
# parameters are also ok!
@ring.redis(rc, coder='json')
def child(self, child_id):
return {'user_id': self['id'], 'child_id': child_id}
user = User(id=42, name='Ring')
# create and get cache
user_data = user.data() # cached
user['name'] = 'Ding'
# still cached
cached_data = user.data()
assert user_data == cached_data
# refresh
updated_data = user.data.update()
assert user_data != updated_data
# id is the cache key so...
user2 = User(id=42)
# still hitting the same cache
assert updated_data == user2.data()
PyPI is the recommended way.
… sourcecode:: shell
$ pip install ring
To browse versions and tarballs, visit:
<https://pypi.python.org/pypi/ring/>
_
To use memcached or redis, don’t forget to install related libraries.
For example: python-memcached, python3-memcached, pylibmc, redis-py, Django etc
It may require to install and run related services on your system too.
Look for memcached
and redis
for your system.
See contributors list on:
<https://github.com/youknowone/ring/graphs/contributors>
_