MetaSeg: Packaged version of the Segment Anything repository
This repo is a packaged version of the segment-anything model.
pip install metaseg
from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor
# If gpu memory is not enough, reduce the points_per_side and points_per_batch.
# For image
results = SegAutoMaskPredictor().image_predict(
source="image.jpg",
model_type="vit_l", # vit_l, vit_h, vit_b
points_per_side=16,
points_per_batch=64,
min_area=0,
output_path="output.jpg",
show=True,
save=False,
)
# For video
results = SegAutoMaskPredictor().video_predict(
source="video.mp4",
model_type="vit_l", # vit_l, vit_h, vit_b
points_per_side=16,
points_per_batch=64,
min_area=1000,
output_path="output.mp4",
)
# For manuel box and point selection
# For image
results = SegManualMaskPredictor().image_predict(
source="image.jpg",
model_type="vit_l", # vit_l, vit_h, vit_b
input_point=[[100, 100], [200, 200]],
input_label=[0, 1],
input_box=[100, 100, 200, 200], # or [[100, 100, 200, 200], [100, 100, 200, 200]]
multimask_output=False,
random_color=False,
show=True,
save=False,
)
# For video
results = SegManualMaskPredictor().video_predict(
source="video.mp4",
model_type="vit_l", # vit_l, vit_h, vit_b
input_point=[0, 0, 100, 100],
input_label=[0, 1],
input_box=None,
multimask_output=False,
random_color=False,
output_path="output.mp4",
)
pip install sahi metaseg
from metaseg.sahi_predict import SahiAutoSegmentation, sahi_sliced_predict
image_path = "image.jpg"
boxes = sahi_sliced_predict(
image_path=image_path,
detection_model_type="yolov5", # yolov8, detectron2, mmdetection, torchvision
detection_model_path="yolov5l6.pt",
conf_th=0.25,
image_size=1280,
slice_height=256,
slice_width=256,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2,
)
SahiAutoSegmentation().image_predict(
source=image_path,
model_type="vit_b",
input_box=boxes,
multimask_output=False,
random_color=False,
show=True,
save=False,
)
pip install metaseg fal_serverless
fal-serverless auth login
# For Auto Mask
from metaseg import falai_automask_image
image = falai_automask_image(
image_path="image.jpg",
model_type="vit_b",
points_per_side=16,
points_per_batch=32,
min_area=0,
)
image.show() # Show image
image.save("output.jpg") # Save image
# For Manual Mask
from metaseg import falai_manuelmask_image
image = falai_manualmask_image(
image_path="image.jpg",
model_type="vit_b",
input_point=[[100, 100], [200, 200]],
input_label=[0, 1],
input_box=[100, 100, 200, 200], # or [[100, 100, 200, 200], [100, 100, 200, 200]],
multimask_output=False,
random_color=False,
)
image.show() # Show image
image.save("output.jpg") # Save image