A sunny little virtual machine
A sunny little programming language on a register-based virtual machine.
Each scheduler has one run queue in which tasks are queued for execution
VM
└ Scheduler (per OS thread)
├ RunQueue
│ └ Task
│ ├ next → Task...
│ ├ super_task → Task...
│ ├ ActivationRecord
│ │ ├ next → ActivationRecord...
│ │ └ Function
│ │ ├ Constants
│ │ └ Instructions
│ ├ ProgramCounter
│ ├ Registry
│ ├ MessageInbox
│ └ WaitingForWatcher
└ WaitQueue
└ Task...
(Task migration)
When more than one scheduler is running, tasks might migrate from one scheduler
to another. For a more in-depth discussion about the design, see “Sol — a sunny little virtual machine”.
The examples below are expressed in a simplified assembly language that is almost 1:1 with the C API code for defining these programs programatically and thus the assembly language itself should be considered irrelevant beyond explaining the instructions executed.
In the output, lines like these: [vm] ______________ ...
denote whent he scheduler regains control after running a task and the task either returned or yielded. This is one “execution iteration”. When running multiple tasks, you will usually see tasks interleved in round-robin order between these “execution iteration” marker lines.
In the output, lines starting with “…” are comments and/or simplifications and not part of the actual output.
In assembly comments (“; …”), R(x)
means “Register x”, RK(x)
means “Register x if x is less than 256 else Constant (x-255)”, K(x)
means “Constant x”.
In assembly comments (“; …”), PC
signifies the “program counter” which is sort of a cursor to the instructions of a program. It is incremented by one for each instruction executed. Some instructions will further modify this counter, like for instance the JUMP
instruction.
While the variable x is greater than zero, decrement x
by one and yield to the
scheduler, letting other tasks run. Eventually return.
def main():
x = 5
while (x > 0):
x = x - 1
yield
return
Assembly:
define main 0
CONST 5 ; K(0) = 5
CONST 0 ; K(1) = 0
CONST 1 ; K(2) = 1
entry:
LOADK 0 0 ; R(0) = K(0)
LE 0 0 256 ; (0 == RK(k+1) < RK(0)) ? continue else PC++
JUMP 3 ; PC += 3 to RETURN
SUB 0 0 257 ; R(0) = R(0) - RK(k+1)
YIELD 0 0 0 ; yield A=type=sched
JUMP -5 ; PC -= 5 to LE
RETURN 0 0 ; return
Output when running in debug mode:
$ build/debug/bin/sol
Sol 0.1.0 x64
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 0 LOADK AB: 0, 0
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 3 SUB ABC: 0, 0, 257
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 4 YIELD ABC: 0, 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 5 JUMP Bss: -5
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 3 SUB ABC: 0, 0, 257
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 4 YIELD ABC: 0, 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
...three more execution iterations identical to the above block...
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 5 JUMP Bss: -5
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 2 JUMP Bss: 3
[vm] 0x7fdf28c03c00 0x7fdf28c000e0 6 RETURN AB: 0, 0
Scheduler runloop exited.
This program uses two functions. The entry point is the main
function which simply
calls the kitten
function with one argument ‘500’. The kitten
function “sleeps” for
the number of milliseconds passed to it (as the first argument.) The kitten
function
then returns the number “123” to the caller—the main
function—which dumps register values and
finally returns, causing the task to exit and subsequently the scheduler and the VM too to exit.
Assembly:
define kitten 1 ; Arguments: (R(0)=sleep_ms)
CONST 123 ; K(0) = 123
entry:
YIELD 1 0 0 ; yield A=type=timer, RK(B)=R(0)=arg0
LOADK 0 0 ; R(0) = K(0) = 123
RETURN 0 1 ; return R(0)..R(0) = R(0) = 123
define main 0 ; Arguments: ()
CONST @kitten ; K(0) = <func kitten>
CONST 500 ; K(1) = 500
entry:
LOADK 0 0 ; R(0) = K(0) = the kitten function
LOADK 1 1 ; R(1) = K(1) = 500
CALL 0 1 1 ; R(0)..R(0) = R(0)(R(1)..R(1)) = a(R(1))
DBGREG 0 1 0 ; VM debug function that dumps register values
RETURN 0 0 ; return
Output when running in debug mode:
$ time build/debug/bin/sol
Sol 0.1.0 x64
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7f8c9bc03bf0 0x7f8c9bc03910 0 LOADK AB: 0, 0
[vm] 0x7f8c9bc03bf0 0x7f8c9bc03910 1 LOADK AB: 1, 1
[vm] 0x7f8c9bc03bf0 0x7f8c9bc03910 2 CALL ABC: 0, 1, 1
[vm] 0x7f8c9bc03bf0 0x7f8c9bc000e0 1 YIELD ABC: 1, 0, 0
D Timer scheduled to trigger after 500.000000 ms (sched.c:81)
# ...time passes and in this case the scheduler is idling...
D Timer triggered -- scheduling task (sched.c:57)
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7f8c9bc03bf0 0x7f8c9bc000e0 2 LOADK AB: 0, 0
[vm] 0x7f8c9bc03bf0 0x7f8c9bc000e0 3 RETURN AB: 0, 1
[vm] 0x7f8c9bc03bf0 0x7f8c9bc03910 3 DBGREG
D [vm] R(0) = 123.000000 (sched_exec.h:214)
D [vm] R(1) = 500.000000 (sched_exec.h:215)
D [vm] R(0) = 123.000000 (sched_exec.h:216)
[vm] 0x7f8c9bc03bf0 0x7f8c9bc03910 4 RETURN AB: 0, 0
Scheduler runloop exited.
real 0m0.504s
user 0m0.001s
sys 0m0.001s
Here we run three tasks, each running the program in Example 1:
$ build/debug/bin/sol
Sol 0.1.0 x64
[sched 0x7fc219403930] run queue:
[task 0x7fc219403c00] -> [task 0x7fc219403cd0] -> [task 0x7fc219403da0]
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fc219403c00 0x7fc2194000e0 0 LOADK AB: 0, 0
[vm] 0x7fc219403c00 0x7fc2194000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fc219403c00 0x7fc2194000e0 3 SUB ABC: 0, 0, 257
[vm] 0x7fc219403c00 0x7fc2194000e0 4 YIELD ABC: 0, 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fc219403cd0 0x7fc2194000e0 0 LOADK AB: 0, 0
[vm] 0x7fc219403cd0 0x7fc2194000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fc219403cd0 0x7fc2194000e0 3 SUB ABC: 0, 0, 257
[vm] 0x7fc219403cd0 0x7fc2194000e0 4 YIELD ABC: 0, 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fc219403da0 0x7fc2194000e0 0 LOADK AB: 0, 0
[vm] 0x7fc219403da0 0x7fc2194000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fc219403da0 0x7fc2194000e0 3 SUB ABC: 0, 0, 257
[vm] 0x7fc219403da0 0x7fc2194000e0 4 YIELD ABC: 0, 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fc219403c00 0x7fc2194000e0 5 JUMP Bss: -5
[vm] 0x7fc219403c00 0x7fc2194000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fc219403c00 0x7fc2194000e0 3 SUB ABC: 0, 0, 257
[vm] 0x7fc219403c00 0x7fc2194000e0 4 YIELD ABC: 0, 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
...The above block of instruction is repeated three times in interleved
round-robin order for each task. Then:
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fc219403c00 0x7fc2194000e0 5 JUMP Bss: -5
[vm] 0x7fc219403c00 0x7fc2194000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fc219403c00 0x7fc2194000e0 2 JUMP Bss: 3
[vm] 0x7fc219403c00 0x7fc2194000e0 6 RETURN AB: 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fc219403cd0 0x7fc2194000e0 5 JUMP Bss: -5
[vm] 0x7fc219403cd0 0x7fc2194000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fc219403cd0 0x7fc2194000e0 2 JUMP Bss: 3
[vm] 0x7fc219403cd0 0x7fc2194000e0 6 RETURN AB: 0, 0
[vm] ______________ ______________ __________ _______ ____ ______________
[vm] Task Function PC Op Values
[vm] 0x7fc219403da0 0x7fc2194000e0 5 JUMP Bss: -5
[vm] 0x7fc219403da0 0x7fc2194000e0 1 LE ABC: 0, 0, 256
[vm] 0x7fc219403da0 0x7fc2194000e0 2 JUMP Bss: 3
[vm] 0x7fc219403da0 0x7fc2194000e0 6 RETURN AB: 0, 0
Scheduler runloop exited.
Initial configuration
deps/libev-configure.sh
Build Sol and run tests (when in the same directory as this README file):
make
Build Sol in debug mode
make DEBUG=1 sol
Run the debug version of Sol
./build/debug/bin/sol
Build and run tests (potentially building Sol too):
make test
sol
— Build Soltest
— Build and run all unit testsclean
— Clean tests and clean the target type for sol (debug or not). Note that you need to pass the DEBUG=1
flag to make clean
to cause cleaning of debug builds. To remove everything that has been generated, simply rm -rf ./build
.Sol specific targets (i.e. for make -C ./sol
):
llvm_ir
— Compile all source files to LLVM IR assembly, placed in <BUILD_PREFIX>/debug/sol-asm/<name>.ll
asm
— Compile all source files to target assembly, placed in <BUILD_PREFIX>/debug/sol-asm/<name>.s
Special flags that can be passed to make (e.g. make FLAG=VALUE ...
):
DEBUG=1|0
— When set to “1”, build without optimizations, with debug symbols, with debug logging and with assertions. Defaults to “0”, which causes building of “release” products (optimizations enabled, no debug logging and no assertions).
TARGET_ARCH=NAME
— Set the architecture to build for. Valid values for NAME
depends on the compiler. Defaults to the host architecture (as reported by uname -m
). For instance, to build an IA32 product on a x64 system: make TARGET_ARCH=i386
.
BUILD_PREFIX
— Base directory for products. Defaults to <BASE_BUILD_PREFIX>/<DEBUG ? debug : release>
.
BASE_BUILD_PREFIX
— Base directory for tests and products. Defaults to ./build
.
TESTS_BUILD_PREFIX
— Base directory for generated tests. Defaults to <BASE_BUILD_PREFIX>/test
.
Copyright © 2012 Rasmus Andersson http://rsms.me/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.