sqlalchemy

The Database Toolkit for Python

9693
1441
Python

========================
Developing new Dialects

… note::

When studying this file, it’s probably a good idea to also
familiarize with the README.unittests.rst file, which discusses
SQLAlchemy’s usage and extension of the pytest test runner.

While SQLAlchemy includes many dialects within the core distribution, the
trend for new dialects should be that they are published as external
projects. SQLAlchemy has since version 0.5 featured a “plugin” system
which allows external dialects to be integrated into SQLAlchemy using
standard setuptools entry points. As of version 0.8, this system has
been enhanced, so that a dialect can also be “plugged in” at runtime.

On the testing side, SQLAlchemy includes a “dialect compliance
suite” that is usable by third party libraries, in the source tree
at lib/sqlalchemy/testing/suite. There’s no need for a third party
dialect to run through SQLAlchemy’s full testing suite, as a large portion of
these tests do not have dialect-sensitive functionality. The “dialect
compliance suite” should be viewed as the primary target for new dialects.

Dialect Layout

The file structure of a dialect is typically similar to the following::

sqlalchemy-<dialect>/
                     setup.py
                     setup.cfg
                     sqlalchemy_<dialect>/
                                          __init__.py
                                          base.py
                                          <dbapi>.py
                                          requirements.py
                     test/
                                          __init__.py
                                          conftest.py
                                          test_suite.py
                                          test_<dialect_specific_test>.py
                                          ...

An example of this structure can be seen in the MS Access dialect at
https://github.com/gordthompson/sqlalchemy-access .

Key aspects of this file layout include:

  • setup.py - should specify setuptools entrypoints, allowing the
    dialect to be usable from create_engine(), e.g.::

      entry_points = {
       'sqlalchemy.dialects': [
            'access.pyodbc = sqlalchemy_access.pyodbc:AccessDialect_pyodbc',
            ]
      }
    

    Above, the entrypoint access.pyodbc allow URLs to be used such as::

    create_engine(“access+pyodbc://user:pw@dsn”)

  • setup.cfg - this file contains the traditional contents such as
    [tool:pytest] directives, but also contains new directives that are used
    by SQLAlchemy’s testing framework. E.g. for Access::

    [tool:pytest]
    addopts= --tb native -v -r fxX --maxfail=25 -p no:warnings
    python_files=test/test_.py

    [sqla_testing]
    requirement_cls=sqlalchemy_access.requirements:Requirements
    profile_file=test/profiles.txt

    [db]
    default=access+pyodbc://admin@access_test
    sqlite=sqlite:///:memory:

    Above, the [sqla_testing] section contains configuration used by
    SQLAlchemy’s test plugin. The [tool:pytest] section
    include directives to help with these runners. When using pytest
    the test/conftest.py file will bootstrap SQLAlchemy’s plugin.

  • test/conftest.py - This script bootstraps SQLAlchemy’s pytest plugin
    into the pytest runner. This
    script can also be used to install your third party dialect into
    SQLAlchemy without using the setuptools entrypoint system; this allows
    your dialect to be present without any explicit setup.py step needed.
    The other portion invokes SQLAlchemy’s pytest plugin::

    from sqlalchemy.dialects import registry
    import pytest

    registry.register(“access.pyodbc”, “sqlalchemy_access.pyodbc”, “AccessDialect_pyodbc”)

    pytest.register_assert_rewrite(“sqlalchemy.testing.assertions”)

    from sqlalchemy.testing.plugin.pytestplugin import *

    Where above, the registry module, introduced in SQLAlchemy 0.8, provides
    an in-Python means of installing the dialect entrypoint(s) without the use
    of setuptools, using the registry.register() function in a way that
    is similar to the entry_points directive we placed in our setup.py.
    (The pytest.register_assert_rewrite is there just to suppress a spurious
    warning from pytest.)

  • requirements.py - The requirements.py file is where directives
    regarding database and dialect capabilities are set up.
    SQLAlchemy’s tests are often annotated with decorators that mark
    tests as “skip” or “fail” for particular backends. Over time, this
    system has been refined such that specific database and DBAPI names
    are mentioned less and less, in favor of @requires directives which
    state a particular capability. The requirement directive is linked
    to target dialects using a Requirements subclass. The custom
    Requirements subclass is specified in the requirements.py file
    and is made available to SQLAlchemy’s test runner using the
    requirement_cls directive inside the [sqla_testing] section.

    For a third-party dialect, the custom Requirements class can
    usually specify a simple yes/no answer for a particular system. For
    example, a requirements file that specifies a database that supports
    the RETURNING construct but does not support nullable boolean
    columns might look like this::

    # sqlalchemy_access/requirements.py
    
    from sqlalchemy.testing.requirements import SuiteRequirements
    
    from sqlalchemy.testing import exclusions
    
    class Requirements(SuiteRequirements):
        @property
        def nullable_booleans(self):
            """Target database allows boolean columns to store NULL."""
            # Access Yes/No doesn't allow null
            return exclusions.closed()
    
        @property
        def returning(self):
            return exclusions.open()
    

    The SuiteRequirements class in
    sqlalchemy.testing.requirements contains a large number of
    requirements rules, which attempt to have reasonable defaults. The
    tests will report on those requirements found as they are run.

    The requirements system can also be used when running SQLAlchemy’s
    primary test suite against the external dialect. In this use case,
    a --dburi as well as a --requirements flag are passed to SQLAlchemy’s
    test runner so that exclusions specific to the dialect take place::

    cd /path/to/sqlalchemy
    pytest -v
    –requirements sqlalchemy_access.requirements:Requirements
    –dburi access+pyodbc://admin@access_test

  • test_suite.py - Finally, the test_suite.py module represents a
    stub test suite, which pulls in the actual SQLAlchemy test suite.
    To pull in the suite as a whole, it can be imported in one step::

    # test/test_suite.py
    
    from sqlalchemy.testing.suite import *
    

    That’s all that’s needed - the sqlalchemy.testing.suite package
    contains an ever expanding series of tests, most of which should be
    annotated with specific requirement decorators so that they can be
    fully controlled. In the case that the decorators are not covering
    a particular test, a test can also be directly modified or bypassed.
    In the example below, the Access dialect test suite overrides the
    get_huge_int() test::

    from sqlalchemy.testing.suite import *
    
    from sqlalchemy.testing.suite import IntegerTest as _IntegerTest
    
    class IntegerTest(_IntegerTest):
    
        @testing.skip("access")
        def test_huge_int(self):
            # bypass this test because Access ODBC fails with
            # [ODBC Microsoft Access Driver] Optional feature not implemented.
            return
    

AsyncIO dialects

As of version 1.4 SQLAlchemy supports also dialects that use
asyncio drivers to interface with the database backend.

SQLAlchemy’s approach to asyncio drivers is that the connection and cursor
objects of the driver (if any) are adapted into a pep-249 compliant interface,
using the AdaptedConnection interface class. Refer to the internal asyncio
driver implementations such as that of asyncpg, asyncmy and
aiosqlite for examples.

Going Forward

The third-party dialect can be distributed like any other Python
module on PyPI. Links to prominent dialects can be featured within
SQLAlchemy’s own documentation; contact the developers (see AUTHORS)
for help with this.

While SQLAlchemy includes many dialects built in, it remains to be
seen if the project as a whole might move towards “plugin” model for
all dialects, including all those currently built in. Now that
SQLAlchemy’s dialect API is mature and the test suite is not far
behind, it may be that a better maintenance experience can be
delivered by having all dialects separately maintained and released.

As new versions of SQLAlchemy are released, the test suite and
requirements file will receive new tests and changes. The dialect
maintainer would normally keep track of these changes and make
adjustments as needed.