Largest multi-label image database; ResNet-101 model; 80.73% top-1 acc on ImageNet
This repository introduces the open-source project dubbed Tencent ML-Images, which publishes
The image URLs of ML-Images are collected from ImageNet and Open Images.
Specifically,
Finally, ML-Images includes 17,609,752 training and 88,739 validation image URLs, covering 11,166 categories.
Due to the copyright, we cannot provide the original images directly. However, one can obtain all images of our database using the following files:
We find that massive urls provided by ImageNet have expired (please check the file List of all image URLs of Fall 2011 Release
at http://image-net.org/download-imageurls). Thus, here we provide the original image IDs of ImageNet used in our database. One can obtain the training/validation images of our database through the following steps:
train_image_id_from_imagenet.txt
and val_image_id_from_imagenet.txt
The format of train_image_id_from_imagenet.txt
is as follows:
...
n04310904/n04310904_8388.JPEG 2367:1 2172:1 1831:1 1054:1 1041:1 865:1 2:1
n11753700/n11753700_1897.JPEG 5725:1 5619:1 5191:1 5181:1 5173:1 5170:1 1042:1 865:1 2:1
...
As shown above, one image corresponds to one row. The first term is the original image ID of ImageNet. The followed terms separated by space are the annotations. For example, “2367:1” indicates class 2367 and its confidence 1. Note that the class index starts from 0, and you can find the class name from the file data/dictionary_and_semantic_hierarchy.txt.
NOTE: We find that there are some repeated URLs in List of all image URLs of Fall 2011 Release
of ImageNet, i.e., the image corresponding to one URL may be stored in multiple sub-folders with different image IDs. We manually check a few repeated images, and find the reason is that one image annotated with a child class may also be annotated with its parent class, then it is saved to two sub-folders with different image IDs. To the best of our knowledge, this point has never been claimed in ImageNet or any other place. If one want to use ImageNet, this point should be noticed.
Due to that, there are also a few repeated images in our database, but our training is not significantly influenced. In future, we will update the database by removing the repeated images.
The images from Open Images can be downloaded using URLs.
The format of train_urls_from_openimages.txt
is as follows:
...
https://c4.staticflickr.com/8/7239/6997334729_e5fb3938b1_o.jpg 3:1 5193:0.9 5851:0.9 9413:1 9416:1
https://c2.staticflickr.com/4/3035/3033882900_a9a4263c55_o.jpg 1053:0.8 1193:0.8 1379:0.8
...
As shown above, one image corresponds to one row. The first term is the image URL. The followed terms separated by space are the annotations. For example, “5193:0.9” indicates class 5193 and its confidence 0.9.
We also provide the code to download images using URLs.
As train_urls_from_openimages.txt
is very large, here we provide a tiny file train_urls_tiny.txt to demonstrate the downloading procedure.
cd data
./download_urls_multithreading.sh
A sub-folder data/images
will be generated to save the downloaded jpeg images, as well as a file train_im_list_tiny.txt
to save the image list and the corresponding annotations.
We build the semantic hiearchy of 11,166 categories, according to WordNet.
The direct parent categories of each class can be found from the file data/dictionary_and_semantic_hierarchy.txt. The whole semantic hierarchy includes 4 independent trees, of which
the root nodes are thing
, matter
, object, physical object
and atmospheric phenomenon
, respectively.
The length of the longest semantic path from root to leaf nodes is 16, and the average length is 7.47.
Since the image URLs of ML-Images are collected from ImageNet and Open Images, the annotations of ML-Images are constructed based on the
original annotations from ImageNet and Open Images. Note that the original annotations from Open Images are licensed by Google Inc. under CC BY-4.0. Specifically, we conduct the following steps to construct the new annotations of ML-Images.
The annotations of all URLs in ML-Images are stored in train_urls.txt
and val_urls.txt
.
The main statistics of ML-Images are summarized in ML-Images.
# Train images | # Validation images | # Classes | # Trainable Classes | # Avg tags per image | # Avg images per class |
---|---|---|---|---|---|
17,609,752 | 88,739 | 11,166 | 10,505 | 8.72 | 13,843 |
Note: Trainable class indicates the class that has over 100 train images.
The number of images per class and the histogram of the number of annotations in training set are shown in the following figures.
Here we generate the tfrecords using the multithreading module. One should firstly split the file train_im_list_tiny.txt
into multiple smaller files, and save them into the sub-folder data/image_lists/
.
cd data
./tfrecord.sh
Multiple tfrecords (named like x.tfrecords
) will saved to data/tfrecords/
.
Before training, one should move the train and validation tfrecords to data/ml-images/train
and data/ml-images/val
, respectively.
Then,
./example/train.sh
Note: Here we only provide the training code in the single node single GPU framework, while our actual training on ML-Images is based on an internal distributed training framework (not released yet). One could modify the training code to the distributed framework following distributed tensorFlow.
One should firstly download the ImageNet (ILSVRC2012) database, then prepare the tfrecord file using tfrecord.sh.
Then, you can finetune the ResNet-101 model on ImageNet as follows, with the checkpoint pre-trained on ML-Images.
./example/finetune.sh
Please download above two checkpoints and move them into the folder checkpoints/
, if you want to extract features using them.
Here we provide a demo for single-label image-classification, using the checkpoint ckpt-resnet101-mlimages-imagenet
downloaded above.
./example/image_classification.sh
The prediction will be saved to label_pred.txt
. If one wants to recognize other images, data/im_list_for_classification.txt
should be modified to include the path of these images.
./example/extract_feature.sh
The retults of different ResNet-101 checkpoints on the validation set of ImageNet (ILSVRC2012) are summarized in the following table.
Checkpoints | Train and finetune setting | Top-1 acc on Val 224 |
Top-5 acc on Val 224 |
Top-1 acc on Val 299 |
Top-5 acc on Val 299 |
---|---|---|---|---|---|
MSRA ResNet-101 | train on ImageNet | 76.4 | 92.9 | – | – |
Google ResNet-101 ckpt1 | train on ImageNet, 299 x 299 | – | – | 77.5 | 93.9 |
Our ResNet-101 ckpt1 | train on ImageNet | 77.8 | 93.9 | 79.0 | 94.5 |
Google ResNet-101 ckpt2 | Pretrain on JFT-300M, finetune on ImageNet, 299 x 299 | – | – | 79.2 | 94.7 |
Our ResNet-101 ckpt2 | Pretrain on ML-Images, finetune on ImageNet | 78.8 | 94.5 | 79.5 | 94.9 |
Our ResNet-101 ckpt3 | Pretrain on ML-Images, finetune on ImageNet 224 to 299 | 78.3 | 94.2 | 80.73 | 95.5 |
Our ResNet-101 ckpt4 | Pretrain on ML-Images, finetune on ImageNet 299 x 299 | 75.8 | 92.7 | 79.6 | 94.6 |
Note:
The annotations of images are licensed by Tencent under CC BY 4.0 license.
The contents of this repository, including the codes, documents and checkpoints, are released under an BSD 3-Clause license. Please refer to LICENSE for more details.
If there is any concern about the copyright of any image used in this project, please email us.
If any content of this project is utilized in your work (such as data, checkpoint, code, or the proposed loss or training algorithm), please cite the following manuscript.
@article{tencent-ml-images-2019,
title={Tencent ML-Images: A Large-Scale Multi-Label Image Database for Visual Representation Learning},
author={Wu, Baoyuan and Chen, Weidong and Fan, Yanbo and Zhang, Yong and Hou, Jinlong and Liu, Jie and Zhang, Tong},
journal={IEEE Access},
volume={7},
year={2019}
}