TensorLayer

Deep Learning and Reinforcement Learning Library for Scientists and Engineers

6941
1555
Python

GitHub last commit (branch)
Supported TF Version
Documentation Status
Build Status
Downloads
Downloads
Docker Pulls
Codacy Badge

Please click TensorLayerX 🔥🔥🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society.
This project can also be found at OpenI and Gitee.

News

  • 🔥 TensorLayerX is a Unified Deep Learning and Reinforcement Learning Framework for All Hardwares, Backends and OS. The current version supports TensorFlow, Pytorch, MindSpore, PaddlePaddle, OneFlow and Jittor as the backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend.
  • TensorLayer is now in OpenI
  • Reinforcement Learning Zoo: Low-level APIs for professional usage, High-level APIs for simple usage, and a corresponding Springer textbook
  • Sipeed Maxi-EMC: Run TensorLayer models on the low-cost AI chip (e.g., K210) (Alpha Version)

Design Features

TensorLayer is a new deep learning library designed with simplicity, flexibility and high-performance in mind.

  • Simplicity : TensorLayer has a high-level layer/model abstraction which is effortless to learn. You can learn how deep learning can benefit your AI tasks in minutes through the massive examples.
  • Flexibility : TensorLayer APIs are transparent and flexible, inspired by the emerging PyTorch library. Compared to the Keras abstraction, TensorLayer makes it much easier to build and train complex AI models.
  • Zero-cost Abstraction : Though simple to use, TensorLayer does not require you to make any compromise in the performance of TensorFlow (Check the following benchmark section for more details).

TensorLayer stands at a unique spot in the TensorFlow wrappers. Other wrappers like Keras and TFLearn
hide many powerful features of TensorFlow and provide little support for writing custom AI models. Inspired by PyTorch, TensorLayer APIs are simple, flexible and Pythonic,
making it easy to learn while being flexible enough to cope with complex AI tasks.
TensorLayer has a fast-growing community. It has been used by researchers and engineers all over the world, including those from Peking University,
Imperial College London, UC Berkeley, Carnegie Mellon University, Stanford University, and companies like Google, Microsoft, Alibaba, Tencent, Xiaomi, and Bloomberg.

Multilingual Documents

TensorLayer has extensive documentation for both beginners and professionals. The documentation is available in
both English and Chinese.

English Documentation
Chinese Documentation
Chinese Book

If you want to try the experimental features on the the master branch, you can find the latest document
here.

Extensive Examples

You can find a large collection of examples that use TensorLayer in here and the following space:

Getting Start

TensorLayer 2.0 relies on TensorFlow, numpy, and others. To use GPUs, CUDA and cuDNN are required.

Install TensorFlow:

pip3 install tensorflow-gpu==2.0.0-rc1 # TensorFlow GPU (version 2.0 RC1)
pip3 install tensorflow # CPU version

Install the stable release of TensorLayer:

pip3 install tensorlayer

Install the unstable development version of TensorLayer:

pip3 install git+https://github.com/tensorlayer/tensorlayer.git

If you want to install the additional dependencies, you can also run

pip3 install --upgrade tensorlayer[all]              # all additional dependencies
pip3 install --upgrade tensorlayer[extra]            # only the `extra` dependencies
pip3 install --upgrade tensorlayer[contrib_loggers]  # only the `contrib_loggers` dependencies

If you are TensorFlow 1.X users, you can use TensorLayer 1.11.0:

# For last stable version of TensorLayer 1.X
pip3 install --upgrade tensorlayer==1.11.0

Performance Benchmark

The following table shows the training speeds of VGG16 using TensorLayer and native TensorFlow on a TITAN Xp.

Mode Lib Data Format Max GPU Memory Usage(MB) Max CPU Memory Usage(MB) Avg CPU Memory Usage(MB) Runtime (sec)
AutoGraph TensorFlow 2.0 channel last 11833 2161 2136 74
TensorLayer 2.0 channel last 11833 2187 2169 76
Graph Keras channel last 8677 2580 2576 101
Eager TensorFlow 2.0 channel last 8723 2052 2024 97
TensorLayer 2.0 channel last 8723 2010 2007 95

Getting Involved

Please read the Contributor Guideline before submitting your PRs.

We suggest users to report bugs using Github issues. Users can also discuss how to use TensorLayer in the following slack channel.



Citing TensorLayer

If you find TensorLayer useful for your project, please cite the following papers:

@article{tensorlayer2017,
    author  = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
    journal = {ACM Multimedia},
    title   = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
    url     = {http://tensorlayer.org},
    year    = {2017}
}

@inproceedings{tensorlayer2021,
  title={Tensorlayer 3.0: A Deep Learning Library Compatible With Multiple Backends},
  author={Lai, Cheng and Han, Jiarong and Dong, Hao},
  booktitle={2021 IEEE International Conference on Multimedia \& Expo Workshops (ICMEW)},
  pages={1--3},
  year={2021},
  organization={IEEE}
}