Tools for reshaping text data
r format(Sys.time(), '%d %B, %Y')
”library(knitr)
knitr::opts_chunk$set(fig.path = "tools/figure/")
combine <- textshape::combine
library(tidyverse)
library(magrittr)
library(ggstance)
library(textshape)
library(gridExtra)
library(viridis)
library(quanteda)
library(gofastr)
## desc <- suppressWarnings(readLines("DESCRIPTION"))
## regex <- "(^Version:\\s+)(\\d+\\.\\d+\\.\\d+)"
## loc <- grep(regex, desc)
## ver <- gsub(regex, "\\2", desc[loc])
## verbadge <- sprintf('<a href="https://img.shields.io/badge/Version-%s-orange.svg"><img ## src="https://img.shields.io/badge/Version-%s-orange.svg" alt="Version"/></a></p>', ver, ver)
## verbadge <- ''
knit_hooks$set(htmlcap = function(before, options, envir) {
if(!before) {
paste('<p class="caption"><b><em>',options$htmlcap,"</em></b></p>",sep="")
}
})
knitr::opts_knit$set(self.contained = TRUE, cache = FALSE)
textshape is small suite of text reshaping and restructuring functions. Many of these functions are descended from tools in the qdapTools package. This brings reshaping tools under one roof with specific functionality of the package limited to text reshaping.
Other R packages provide some of the same functionality. textshape differs from these packages in that it is designed to help the user take unstructured data (or implicitly structured), extract it into a structured format, and then restructure into common text analysis formats for use in the next stage of the text analysis pipeline. The implicit structure of seemingly unstructured data is often detectable/expressible by the researcher. textshape provides tools (e.g., split_match
) to enable the researcher to convert this tacit knowledge into a form that can be used to reformat data into more structured formats. This package is meant to be used jointly with the textclean package, which provides cleaning and text normalization functionality.
Most of the functions split, expand, grab, or tidy a vector
, list
, data.frame
, or DocumentTermMatrix
. The combine
, duration
, mtabulate
, & flatten
functions are notable exceptions. The table below describes the functions and their use:
Function | Used On | Description |
---|---|---|
combine |
vector , list , data.frame |
Combine and collapse elements |
tidy_list |
list of vector s or data.frame s |
Row bind a list and repeat list names as id column |
tidy_vector |
vector |
Column bind a named atomic vector ’s names and values |
tidy_table |
table |
Column bind a table ’s names and values |
tidy_matrix |
matrix |
Stack values, repeat column row names accordingly |
tidy_dtm /tidy_tdm |
DocumentTermMatrix |
Tidy format DocumentTermMatrix /TermDocumentMatrix |
tidy_colo_dtm /tidy_colo_tdm |
DocumentTermMatrix |
Tidy format of collocating words from a DocumentTermMatrix /TermDocumentMatrix |
duration |
vector , data.frame |
Get duration (start-end times) for turns of talk in n words |
from_to |
vector , data.frame |
Prepare speaker data for a flow network |
mtabulate |
vector , list , data.frame |
Dataframe/list version of tabulate to produce count matrix |
flatten |
list |
Flatten nested, named list to single tier |
unnest_text |
data.frame |
Unnest a nested text column |
split_index |
vector , list , data.frame |
Split at specified indices |
split_match |
vector |
Split vector at specified character/regex match |
split_portion |
vector * |
Split data into portioned chunks |
split_run |
vector , data.frame |
Split runs (e.g., “aaabbbbcdddd”) |
split_sentence |
vector , data.frame |
Split sentences |
split_speaker |
data.frame |
Split combined speakers (e.g., “Josh, Jake, Jim”) |
split_token |
vector , data.frame |
Split words and punctuation |
split_transcript |
vector |
Split speaker and dialogue (e.g., “greg: Who me”) |
split_word |
vector , data.frame |
Split words |
grab_index |
vector , data.frame , list |
Grab from an index up to a second index |
grab_match |
vector , data.frame , list |
Grab from a regex match up to a second regex match |
column_to_rownames |
data.frame |
Add a column as rownames |
cluster_matrix |
matrix |
Reorder column/rows of a matrix via hierarchical clustering |
*Note: Text vector accompanied by aggregating grouping.var
argument, which can be in the form of a vector
, list
, or data.frame
To download the development version of textshape:
Download the zip ball or tar ball, decompress and run R CMD INSTALL
on it, or use the pacman package to install the development version:
if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/textshape")
You are welcome to:
Contributions are welcome from anyone subject to the following rules:
The main shaping functions can be broken into the categories of (a) binding, (b) combining, (c) tabulating, (d) spanning, (e) splitting, (f) grabbing & (e) tidying. The majority of functions in textshape fall into the category of splitting and expanding (the semantic opposite of combining). These sections will provide example uses of the functions from textshape within the three categories.
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, magrittr, ggstance, viridis, gridExtra, quanteda)
pacman::p_load_current_gh('trinker/gofastr', 'trinker/textshape')
The tidy_xxx
functions convert untidy structures into tidy format. Tidy formatted text data structures are particularly useful for interfacing with ggplot2, which expects this form.
The tidy_list
function is used in the style of do.call(rbind, list(x1, x2))
as a convenient way to bind together multiple named data.frame
s or vectors
s into a single data.frame
with the list
names
acting as an id column. The data.frame
bind is particularly useful for binding transcripts from different observations. Additionally, tidy_vector
and tidy_table
are provided for cbinding
a table
’s or named atomic vector
’s values and names as separate columns in a data.frame
. Lastly, tidy_dtm
/tidy_tdm
provide convenient ways to tidy a DocumentTermMatrix
or TermDocumentMatrix
.
x <- list(p=1:500, r=letters)
tidy_list(x)
x <- list(p=mtcars, r=mtcars, z=mtcars, d=mtcars)
tidy_list(x)
x <- setNames(
sample(LETTERS[1:6], 1000, TRUE),
sample(state.name[1:5], 1000, TRUE)
)
tidy_vector(x)
x <- table(sample(LETTERS[1:6], 1000, TRUE))
tidy_table(x)
mat <- matrix(1:16, nrow = 4,
dimnames = list(LETTERS[1:4], LETTERS[23:26])
)
mat
tidy_matrix(mat)
With clustering (column and row reordering) via the cluster_matrix
function.
## plot heatmap w/o clustering
wo <- mtcars %>%
cor() %>%
tidy_matrix('car', 'var') %>%
ggplot(aes(var, car, fill = value)) +
geom_tile() +
scale_fill_viridis(name = expression(r[xy])) +
theme(
axis.text.y = element_text(size = 8) ,
axis.text.x = element_text(size = 8, hjust = 1, vjust = 1, angle = 45),
legend.position = 'bottom',
legend.key.height = grid::unit(.1, 'cm'),
legend.key.width = grid::unit(.5, 'cm')
) +
labs(subtitle = "With Out Clustering")
## plot heatmap w clustering
w <- mtcars %>%
cor() %>%
cluster_matrix() %>%
tidy_matrix('car', 'var') %>%
mutate(
var = factor(var, levels = unique(var)),
car = factor(car, levels = unique(car))
) %>%
group_by(var) %>%
ggplot(aes(var, car, fill = value)) +
geom_tile() +
scale_fill_viridis(name = expression(r[xy])) +
theme(
axis.text.y = element_text(size = 8) ,
axis.text.x = element_text(size = 8, hjust = 1, vjust = 1, angle = 45),
legend.position = 'bottom',
legend.key.height = grid::unit(.1, 'cm'),
legend.key.width = grid::unit(.5, 'cm')
) +
labs(subtitle = "With Clustering")
grid.arrange(wo, w, ncol = 2)
The tidy_dtm
and tidy_tdm
functions convert a DocumentTermMatrix
or TermDocumentMatrix
into a tidied data set.
my_dtm <- with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_")))
tidy_dtm(my_dtm) %>%
tidyr::extract(doc, c("time", "turn", "sentence"), "(\\d)_(\\d+)\\.(\\d+)") %>%
mutate(
time = as.numeric(time),
turn = as.numeric(turn),
sentence = as.numeric(sentence)
) %>%
tbl_df() %T>%
print() %>%
group_by(time, term) %>%
summarize(n = sum(n)) %>%
group_by(time) %>%
arrange(desc(n)) %>%
slice(1:10) %>%
mutate(term = factor(paste(term, time, sep = "__"), levels = rev(paste(term, time, sep = "__")))) %>%
ggplot(aes(x = n, y = term)) +
geom_barh(stat='identity') +
facet_wrap(~time, ncol=2, scales = 'free_y') +
scale_y_discrete(labels = function(x) gsub("__.+$", "", x))
The tidy_colo_dtm
and tidy_colo_tdm
functions convert a DocumentTermMatrix
or TermDocumentMatrix
into a collocation matrix and then a tidied data set.
my_dtm <- with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_")))
sw <- unique(c(
lexicon::sw_jockers,
lexicon::sw_loughran_mcdonald_long,
lexicon::sw_fry_1000
))
tidy_colo_dtm(my_dtm) %>%
tbl_df() %>%
filter(!term_1 %in% c('i', sw) & !term_2 %in% sw) %>%
filter(term_1 != term_2) %>%
unique_pairs() %>%
filter(n > 15) %>%
complete(term_1, term_2, fill = list(n = 0)) %>%
ggplot(aes(x = term_1, y = term_2, fill = n)) +
geom_tile() +
scale_fill_gradient(low= 'white', high = 'red') +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
The combine
function acts like paste(x, collapse=" ")
on vectors and lists of vectors. On dataframes multiple text cells are pasted together within grouping variables.
x <- c("Computer", "is", "fun", ".", "Not", "too", "fun", ".")
combine(x)
(dat <- split_sentence(DATA))
combine(dat[, 1:5, with=FALSE])
mtabulate
allows the user to transform data types into a dataframe of counts.
(x <- list(w=letters[1:10], x=letters[1:5], z=letters))
mtabulate(x)
## Dummy coding
mtabulate(mtcars$cyl[1:10])
(dat <- data.frame(matrix(sample(c("A", "B"), 30, TRUE), ncol=3)))
mtabulate(dat)
t(mtabulate(dat))
Often it is useful to know the duration (start-end) of turns of talk. The duration
function calculates start-end durations as n words.
(x <- c(
"Mr. Brown comes! He says hello. i give him coffee.",
"I'll go at 5 p. m. eastern time. Or somewhere in between!",
"go there"
))
duration(x)
# With grouping variables
groups <- list(group1 = c("A", "B", "A"), group2 = c("red", "red", "green"))
duration(x, groups)
duration(DATA)
library(ggplot2)
ggplot(duration(DATA), aes(x = start, xend = end, y = person, yend = person, color = sex)) +
geom_segment(size=4) +
xlab("Duration (Words)") +
ylab("Person")
The following section provides examples of available splitting functions.
split_index
allows the user to supply the integer indices of where to split a data type.
split_index(
LETTERS,
indices = c(4, 10, 16),
names = c("dog", "cat", "chicken", "rabbit")
)
Here I calculate the indices of every time the vs
variable in the mtcars
data set changes and then split the dataframe on those indices. The change_index
function is handy for extracting the indices of changes in runs within an atomic vector.
(vs_change <- change_index(mtcars[["vs"]]))
split_index(mtcars, indices = vs_change)
split_match
splits on elements that match exactly or via a regular expression match.
set.seed(15)
(x <- sample(c("", LETTERS[1:10]), 25, TRUE, prob=c(.2, rep(.08, 10))))
split_match(x)
split_match(x, split = "C")
split_match(x, split = c("", "C"))
## Don't include
split_match(x, include = 0)
## Include at beginning
split_match(x, include = 1)
## Include at end
split_match(x, include = 2)
Here I use the regex "^I"
to break on any vectors containing the capital letter I as the first character.
split_match(DATA[["state"]], split = "^I", regex=TRUE, include = 1)
At times it is useful to split texts into portioned chunks, operate on the chunks and aggregate the results. split_portion
allows the user to do this sort of text shaping. We can split into n chunks per grouping variable (via n.chunks
) or into chunks of n length (via n.words
).
with(DATA, split_portion(state, n.chunks = 10))
with(DATA, split_portion(state, n.words = 10))
with(DATA, split_portion(state, list(sex, adult), n.words = 10))
split_run
allows the user to split up runs of identical characters.
x1 <- c(
"122333444455555666666",
NA,
"abbcccddddeeeeeffffff",
"sddfg",
"11112222333"
)
x <- c(rep(x1, 2), ">>???,,,,....::::;[[")
split_run(x)
DATA[["run.col"]] <- x
split_run(DATA)
## Reset the DATA dataset
DATA <- textshape::DATA
split_sentece
provides a mapping + regex approach to splitting sentences. It is less accurate than the Stanford parser but more accurate than a simple regular expression approach alone.
(x <- paste0(
"Mr. Brown comes! He says hello. i give him coffee. i will ",
"go at 5 p. m. eastern time. Or somewhere in between!go there"
))
split_sentence(x)
split_sentence(DATA)
Often speakers may talk in unison. This is often displayed in a single cell as a comma separated string of speakers. Some analysis may require this information to be parsed out and replicated as one turn per speaker. The split_speaker
function accomplishes this.
DATA$person <- as.character(DATA$person)
DATA$person[c(1, 4, 6)] <- c("greg, sally, & sam",
"greg, sally", "sam and sally")
DATA
split_speaker(DATA)
## Reset the DATA dataset
DATA <- textshape::DATA
The split_token
function split data into words and punctuation.
(x <- c(
"Mr. Brown comes! He says hello. i give him coffee.",
"I'll go at 5 p. m. eastern time. Or somewhere in between!",
"go there"
))
split_token(x)
split_token(DATA)
The split_transcript
function splits vector
s with speaker prefixes (e.g., c("greg: Who me", "sarah: yes you!")
) into a two column data.frame
.
(x <- c(
"greg: Who me",
"sarah: yes you!",
"greg: well why didn't you say so?",
"sarah: I did but you weren't listening.",
"greg: oh :-/ I see...",
"dan: Ok let's meet at 4:30 pm for drinks"
))
split_transcript(x)
The split_word
function splits data into words.
(x <- c(
"Mr. Brown comes! He says hello. i give him coffee.",
"I'll go at 5 p. m. eastern time. Or somewhere in between!",
"go there"
))
split_word(x)
split_word(DATA)
The following section provides examples of available grabbing (from a starting point up to an ending point) functions.
grab_index
allows the user to supply the integer indices of where to grab (from - up to) a data type.
grab_index(DATA$state, from = 2, to = 4)
grab_index(DATA$state, from = 9)
grab_index(DATA$state, to = 3)
grab_index(DATA, from = 2, to = 4)
grab_index(as.list(DATA$state), from = 2, to = 4)
grab_match
grabs (from - up to) elements that match a regular expression.
grab_match(DATA$state, from = 'dumb', to = 'liar')
grab_match(DATA$state, from = '^What are')
grab_match(DATA$state, to = 'we do[?]')
grab_match(DATA$state, from = 'no', to = 'the', ignore.case = TRUE,
from.n = 'last', to.n = 'first')
grab_match(DATA, from = 'dumb', to = 'liar')
grab_match(as.list(DATA$state), from = 'dumb', to = 'liar')
Eduardo Flores blogged about What the candidates say, analyzing republican debates using R where he demonstrated some scraping and analysis techniques. Here I highlight a combination usage of textshape tools to scrape and structure the text from 4 of the 2015 Republican debates within a magrittr pipeline. The result is a single data.table containing the dialogue from all 4 debates. The code highlights the conciseness and readability of textshape by restructuring Flores scraping with textshape replacements.
if (!require("pacman")) install.packages("pacman")
pacman::p_load(rvest, magrittr, xml2)
debates <- c(
wisconsin = "110908",
boulder = "110906",
california = "110756",
ohio = "110489"
)
lapply(debates, function(x){
xml2::read_html(paste0("http://www.presidency.ucsb.edu/ws/index.php?pid=", x)) %>%
rvest::html_nodes("p") %>%
rvest::html_text() %>%
textshape::split_index(., grep("^[A-Z]+:", .)) %>%
#textshape::split_match("^[A-Z]+:", TRUE, TRUE) %>% #equal to line above
textshape::combine() %>%
textshape::split_transcript() %>%
textshape::split_sentence()
}) %>%
textshape::tidy_list("location")