Get the power of polars with the syntax of the tidyverse
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
ℹ️ This is the R package “tidypolars”. The Python one is here: markfairbanks/tidypolars
tidypolars
provides a polars
backend for the
tidyverse
. The aim of tidypolars
is to enable users to keep their existing
tidyverse
code while using polars
in the background to benefit from large
performance gains. The only thing that needs to change is the way data is
imported in the R session.
See the “Getting started” vignette
for a gentle introduction to tidypolars
.
Since most of the work is rewriting tidyverse
code into polars
syntax,
tidypolars
and polars
have very similar performance.
The main purpose of this benchmark is to show that polars
and tidypolars
are
close and to give an idea of the performance. For more thorough, representative
benchmarks about polars
, take a look at DuckDB benchmarks instead.
library(collapse, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)
library(dtplyr)
library(polars)
library(tidypolars)
large_iris <- data.table::rbindlist(rep(list(iris), 100000))
large_iris_pl <- as_polars_lf(large_iris)
large_iris_dt <- lazy_dt(large_iris)
format(nrow(large_iris), big.mark = ",")
bench::mark(
polars = {
large_iris_pl$
select(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"))$
with_columns(
pl$when(
(pl$col("Petal.Length") / pl$col("Petal.Width") > 3)
)$then(pl$lit("long"))$
otherwise(pl$lit("large"))$
alias("petal_type")
)$
filter(pl$col("Sepal.Length")$is_between(4.5, 5.5))$
collect()
},
tidypolars = {
large_iris_pl |>
select(starts_with(c("Sep", "Pet"))) |>
mutate(
petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
) |>
filter(between(Sepal.Length, 4.5, 5.5)) |>
compute()
},
dplyr = {
large_iris |>
select(starts_with(c("Sep", "Pet"))) |>
mutate(
petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
) |>
filter(between(Sepal.Length, 4.5, 5.5))
},
dtplyr = {
large_iris_dt |>
select(starts_with(c("Sep", "Pet"))) |>
mutate(
petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
) |>
filter(between(Sepal.Length, 4.5, 5.5)) |>
as.data.frame()
},
collapse = {
large_iris |>
fselect(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")) |>
fmutate(
petal_type = data.table::fifelse((Petal.Length / Petal.Width) > 3, "long", "large")
) |>
fsubset(Sepal.Length >= 4.5 & Sepal.Length <= 5.5)
},
check = FALSE,
iterations = 40
)
# NOTE: do NOT take the "mem_alloc" results into account.
# `bench::mark()` doesn't report the accurate memory usage for packages calling
# Rust code.
tidypolars
is built on polars
, which is not available on CRAN. This means
that tidypolars
also can’t be on CRAN. However, you can install it from
R-universe.
Sys.setenv(NOT_CRAN = "true")
install.packages("tidypolars", repos = c("https://community.r-multiverse.org", 'https://cloud.r-project.org'))
Did you find some bugs or some errors in the documentation? Do you want
tidypolars
to support more functions?
Take a look at the contributing guide for instructions
on bug report and pull requests.
The website theme was heavily inspired by Matthew Kay’s ggblend
package: https://mjskay.github.io/ggblend/.
The package hex logo was created by Hubert Hałun as part of the Appsilon Hex
Contest.