tidypolars

Get the power of polars with the syntax of the tidyverse


output: github_document

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

tidypolars

R-CMD-check
tidypolars status badge
Codecov test coverage


ℹ️ This is the R package “tidypolars”. The Python one is here: markfairbanks/tidypolars


Overview

tidypolars provides a polars backend for the
tidyverse. The aim of tidypolars is to enable users to keep their existing
tidyverse code while using polars in the background to benefit from large
performance gains. The only thing that needs to change is the way data is
imported in the R session.

See the “Getting started” vignette
for a gentle introduction to tidypolars.

Since most of the work is rewriting tidyverse code into polars syntax,
tidypolars and polars have very similar performance.

Click to see a small benchmark

The main purpose of this benchmark is to show that polars and tidypolars are
close and to give an idea of the performance. For more thorough, representative
benchmarks about polars, take a look at DuckDB benchmarks instead.

library(collapse, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)
library(dtplyr)
library(polars)
library(tidypolars)

large_iris <- data.table::rbindlist(rep(list(iris), 100000))
large_iris_pl <- as_polars_lf(large_iris)
large_iris_dt <- lazy_dt(large_iris)

format(nrow(large_iris), big.mark = ",")

bench::mark(
  polars = {
    large_iris_pl$
      select(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"))$
      with_columns(
        pl$when(
          (pl$col("Petal.Length") / pl$col("Petal.Width") > 3)
        )$then(pl$lit("long"))$
          otherwise(pl$lit("large"))$
          alias("petal_type")
      )$
      filter(pl$col("Sepal.Length")$is_between(4.5, 5.5))$
      collect()
  },
  tidypolars = {
    large_iris_pl |>
      select(starts_with(c("Sep", "Pet"))) |>
      mutate(
        petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |> 
      filter(between(Sepal.Length, 4.5, 5.5)) |> 
      compute()
  },
  dplyr = {
    large_iris |>
      select(starts_with(c("Sep", "Pet"))) |>
      mutate(
        petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |>
      filter(between(Sepal.Length, 4.5, 5.5))
  },
  dtplyr = {
    large_iris_dt |>
      select(starts_with(c("Sep", "Pet"))) |>
      mutate(
        petal_type = ifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |>
      filter(between(Sepal.Length, 4.5, 5.5)) |> 
      as.data.frame()
  },
  collapse = {
    large_iris |>
      fselect(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")) |>
      fmutate(
        petal_type = data.table::fifelse((Petal.Length / Petal.Width) > 3, "long", "large")
      ) |>
      fsubset(Sepal.Length >= 4.5 & Sepal.Length <= 5.5)
  },
  check = FALSE,
  iterations = 40
)

# NOTE: do NOT take the "mem_alloc" results into account.
# `bench::mark()` doesn't report the accurate memory usage for packages calling
# Rust code.

Installation

tidypolars is built on polars, which is not available on CRAN. This means
that tidypolars also can’t be on CRAN. However, you can install it from
R-universe.

Sys.setenv(NOT_CRAN = "true")
install.packages("tidypolars", repos = c("https://community.r-multiverse.org", 'https://cloud.r-project.org'))

Contributing

Did you find some bugs or some errors in the documentation? Do you want
tidypolars to support more functions?

Take a look at the contributing guide for instructions
on bug report and pull requests.

Acknowledgements

The website theme was heavily inspired by Matthew Kay’s ggblend package: https://mjskay.github.io/ggblend/.

The package hex logo was created by Hubert Hałun as part of the Appsilon Hex
Contest.