tidyterra

tidyverse and ggplot2 methods for terra spatial objects

184
8
R

output: github_document

knitr::opts_knit$set(
  progress = TRUE,
  base.url = "https://raw.githubusercontent.com/dieghernan/tidyterra/main/"
)
knitr::opts_chunk$set(
  collapse = TRUE,
  tidy = "styler",
  comment = "#>",
  fig.path = "img/README-",
  warning = FALSE,
  message = FALSE,
  dev = "ragg_png",
  dpi = 300,
  out.width = "100%"
)

tidyterra

CRAN
status
CRAN
results
Downloads
DOI
R-CMD-check
R-hub
codecov
CodeFactor
r-universe
Project Status: Active -- The project has reached a stable, usable state and
is being actively
developed.
Stack Exchange
questions
Works with
terra-devel
Works with
sf-devel
Works with
ggplot2-devel
Works with dplyr and
readr-devel

The goal of tidyterra is to provide common methods of the tidyverse
packages
for objects created with the
terra package: SpatRaster and
SpatVector. It also provides geoms for plotting these objects with
ggplot2.

Please cite tidyterra as:

Hernangómez, D., (2023). Using the tidyverse with terra objects: the tidyterra
package. Journal of Open Source Software, 8(91), 5751,
https://doi.org/10.21105/joss.05751.

A BibTeX entry for LaTeX users is:

@article{Hernangómez2023,
  doi = {10.21105/joss.05751},
  url = {https://doi.org/10.21105/joss.05751},
  year = {2023},
  publisher = {The Open Journal},
  volume = {8},
  number = {91},
  pages = {5751},
  author = {Diego Hernangómez},
  title = {Using the {tidyverse} with {terra} objects: the {tidyterra} package},
  journal = {Journal of Open Source Software}
}

Overview

Full manual of the most recent release of tidyterra on CRAN is online:
https://dieghernan.github.io/tidyterra/

tterra_v <- packageVersion("tidyterra")

l <- unlist(strsplit(as.character(tterra_v), ".", fixed = TRUE))

if (length(l) == 4) {
  cat(
    "\n",
    "You can have a look to the documentation of",
    "the dev version in <https://dieghernan.github.io/tidyterra/dev/>"
  )
}

tidyverse methods implemented on tidyterra works differently depending
on the type of Spat* object:

  • SpatVector: the methods are implemented using terra::as.data.frame()
    coercion. Rows correspond to geometries and columns correspond to attributes
    of the geometry.

  • SpatRaster: The implementation on SpatRaster objects differs, since the
    methods could be applied to layers or to cells. tidyterra overall
    approach is to treat the layers as columns of a tibble and the cells as rows
    (i.e. select(SpatRaster, 1) would select the first layer of a
    SpatRaster).

The methods implemented return the same type of object used as input, unless the
expected behavior of the method is to return another type of object, (for
example, as_tibble() would return a tibble).

Current methods and functions provided by tidyterra are:

tidyverse method SpatVector SpatRaster
tibble::as_tibble() ✔️ ✔️
dplyr::select() ✔️ ✔️ Select layers
dplyr::mutate() ✔️ ✔️ Create /modify layers
dplyr::transmute() ✔️ ✔️
dplyr::filter() ✔️ ✔️ Modify cells values and (additionally) remove outer cells.
dplyr::slice() ✔️ ✔️ Additional methods for slicing by row and column.
dplyr::pull() ✔️ ✔️
dplyr::rename() ✔️ ✔️
dplyr::relocate() ✔️ ✔️
dplyr::distinct() ✔️
dplyr::arrange() ✔️
dplyr::glimpse() ✔️ ✔️
dplyr::inner_join() family ✔️
dplyr::summarise() ✔️
dplyr::group_by() family ✔️
dplyr::rowwise() ✔️
dplyr::count(), tally() ✔️
dplyr::bind_cols() / dplyr::bind_rows() ✔️ as bind_spat_cols() / bind_spat_rows()
tidyr::drop_na() ✔️ ✔️ Remove cell values with NA on any layer. Additionally, outer cells with NA are removed.
tidyr::replace_na() ✔️ ✔️
tidyr::fill() ✔️
tidyr::pivot_longer() ✔️
tidyr::pivot_wider() ✔️
ggplot2::autoplot() ✔️ ✔️
ggplot2::fortify() ✔️ to sf via sf::st_as_sf() To a tibble with coordinates.
ggplot2::geom_*() ✔️ geom_spatvector() ✔️ geom_spatraster() and geom_spatraster_rgb().

❗ A note on performance

tidyterra is conceived as a user-friendly wrapper of terra using the
tidyverse methods and verbs. This approach therefore has a cost in terms
of performance
.

If you are a heavy user of terra or you need to work with big raster
files
, terra is much more focused on terms of performance. When possible,
each function of tidyterra references to its equivalent on terra.

As a rule of thumb if your raster has less than 10.000.000 data slots counting
cells and layers (i.e. terra::ncell(your_rast)*terra::nlyr(your_rast) < 10e6)
you are good to go with tidyterra.

When plotting rasters, resampling is performed automatically (as terra::plot()
does, see the help page). You can adjust this with the maxcell parameter.

Installation

Install tidyterra from
CRAN:

install.packages("tidyterra")

You can install the development version of tidyterra like so:

remotes::install_github("dieghernan/tidyterra")

Alternatively, you can install tidyterra using the
r-universe:

# Enable this universe
install.packages("tidyterra", repos = c(
  "https://dieghernan.r-universe.dev",
  "https://cloud.r-project.org"
))

Example

SpatRasters

This is a basic example which shows you how to manipulate and plot SpatRaster
objects:

library(tidyterra)
library(terra)

# Temperatures
rastertemp <- rast(system.file("extdata/cyl_temp.tif", package = "tidyterra"))

rastertemp

# Rename
rastertemp <- rastertemp %>%
  rename(April = tavg_04, May = tavg_05, June = tavg_06)

# Facet all layers
library(ggplot2)

ggplot() +
  geom_spatraster(data = rastertemp) +
  facet_wrap(~lyr, ncol = 2) +
  scale_fill_whitebox_c(
    palette = "muted",
    labels = scales::label_number(suffix = "º"),
    n.breaks = 12,
    guide = guide_legend(reverse = TRUE)
  ) +
  labs(
    fill = "",
    title = "Average temperature in Castille and Leon (Spain)",
    subtitle = "Months of April, May and June"
  )

# Create maximum differences of two months
variation <- rastertemp %>%
  mutate(diff = June - May) %>%
  select(variation = diff)

# Add also a overlay of a SpatVector
prov <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

ggplot(prov) +
  geom_spatraster(data = variation) +
  geom_spatvector(fill = NA) +
  scale_fill_whitebox_c(
    palette = "deep", direction = -1,
    labels = scales::label_number(suffix = "º"),
    n.breaks = 5
  ) +
  theme_minimal() +
  coord_sf(crs = 25830) +
  labs(
    fill = "variation",
    title = "Variation of temperature in Castille and Leon (Spain)",
    subtitle = "Average temperatures in June vs. May"
  )

tidyterra also provide a geom for plotting RGB SpatRaster tiles with
ggplot2

rgb_tile <- rast(system.file("extdata/cyl_tile.tif", package = "tidyterra"))

plot <- ggplot(prov) +
  geom_spatraster_rgb(data = rgb_tile) +
  geom_spatvector(fill = NA) +
  theme_light()

plot

# Recognizes coord_sf()
plot +
  # Change crs and datum (for relabeling graticules)
  coord_sf(crs = 3857, datum = 3857)

tidyterra provides specific scales for plotting hypsometric maps with
ggplot2:

asia <- rast(system.file("extdata/asia.tif", package = "tidyterra"))

terra::plot(asia)

ggplot() +
  geom_spatraster(data = asia) +
  scale_fill_hypso_tint_c(
    palette = "gmt_globe",
    labels = scales::label_number(),
    # Further refinements
    breaks = c(-10000, -5000, 0, 2000, 5000, 8000),
    guide = guide_colorbar(reverse = TRUE)
  ) +
  labs(
    fill = "elevation (m)",
    title = "Hypsometric map of Asia"
  ) +
  theme(
    legend.position = "bottom",
    legend.title.position = "top",
    legend.key.width = rel(3),
    legend.ticks = element_line(colour = "black", linewidth = 0.3),
    legend.direction = "horizontal"
  )

SpatVectors

This is a basic example which shows you how to manipulate and plot SpatVector
objects:

vect(system.file("ex/lux.shp", package = "terra")) %>%
  mutate(pop_dens = POP / AREA) %>%
  glimpse() %>%
  autoplot(aes(fill = pop_dens)) +
  scale_fill_whitebox_c(palette = "pi_y_g") +
  labs(
    fill = "population per km2",
    title = "Population density of Luxembourg",
    subtitle = "By canton"
  )

I need your feedback

Please leave your feedback or open an issue on
https://github.com/dieghernan/tidyterra/issues.

Need help?

Check our FAQs or
open a new issue!

You can also ask in Stack Overflow using the tag
[tidyterra].

Acknowledgement

tidyterra ggplot2 geoms are based on
ggspatial implementation, by
Dewey Dunnington and ggspatial
contributors
.