Tukuy

Tukuy is a robust, extensible data transformation library that leverages a flexible plugin system. It simplifies the manipulation, validation, and extraction of data across multiple formats (text, HTML, JSON, dates, numbers, and more), making it an ideal tool for building data pipelines and cleaning workflows.

20
0
Python

πŸŒ€ Tukuy

A flexible data transformation library with a plugin system for Python.

πŸš€ Overview

Tukuy (meaning β€œto transform” or β€œto become” in Quechua) is a powerful and extensible data transformation library that makes it easy to manipulate, validate, and extract data from various formats. With its plugin architecture, Tukuy provides a unified interface for working with text, HTML, JSON, dates, numbers, and more.

✨ Features

  • 🧩 Plugin System: Easily extend functionality with custom plugins
  • πŸ”„ Chainable Transformers: Compose multiple transformations in sequence
  • πŸ§ͺ Type-safe Transformations: With built-in validation
  • πŸ“Š Rich Set of Built-in Transformers:
    • πŸ“ Text manipulation (case conversion, trimming, regex, etc.)
    • 🌐 HTML processing and extraction
    • πŸ“… Date parsing and calculations
    • πŸ”’ Numerical operations
    • βœ… Data validation
    • πŸ“‹ JSON parsing and extraction
  • πŸ” Pattern-based Data Extraction: Extract structured data from HTML and JSON
  • πŸ›‘οΈ Error Handling: Comprehensive error handling with detailed messages

πŸ“¦ Installation

pip install tukuy

πŸ› οΈ Basic Usage

from tukuy import TukuyTransformer

# Create transformer
TUKUY = TukuyTransformer()

# Basic text transformation
text = " Hello World! "
result = TUKUY.transform(text, [
    "strip",
    "lowercase",
    {"function": "truncate", "length": 5}
])
print(result)  # "hello..."

# HTML transformation
html = "<div>Hello <b>World</b>!</div>"
result = TUKUY.transform(html, [
    "strip_html_tags",
    "lowercase"
])
print(result)  # "hello world!"

# Date transformation
date_str = "2023-01-01"
age = TUKUY.transform(date_str, [
    {"function": "age_calc"}
])
print(age)  # 1

# Validation
email = "[email protected]"
valid = TUKUY.transform(email, ["email_validator"])
print(valid)  # "[email protected]" or None if invalid

🧩 Plugin System

Tukuy uses a plugin system to organize transformers into logical groups and make it easy to extend functionality.

πŸ“š Built-in Plugins

  • πŸ“ text: Basic text transformations (strip, lowercase, regex, etc.)
  • 🌐 html: HTML manipulation and extraction
  • πŸ“… date: Date parsing and calculations
  • βœ… validation: Data validation and formatting
  • πŸ”’ numerical: Number manipulation and calculations
  • πŸ“‹ json: JSON parsing and extraction

πŸ”Œ Creating Custom Plugins

You can create custom plugins by extending the TransformerPlugin class:

from tukuy.plugins import TransformerPlugin
from tukuy.base import ChainableTransformer

class ReverseTransformer(ChainableTransformer[str, str]):
    def validate(self, value: str) -> bool:
        return isinstance(value, str)
    
    def _transform(self, value: str, context=None) -> str:
        return value[::-1]

class MyPlugin(TransformerPlugin):
    def __init__(self):
        super().__init__("my_plugin")
    
    @property
    def transformers(self):
        return {
            'reverse': lambda _: ReverseTransformer('reverse')
        }

# Usage
TUKUY = TukuyTransformer()
TUKUY.register_plugin(MyPlugin())

result = TUKUY.transform("hello", ["reverse"])  # "olleh"

See the example plugin for a more detailed example.

πŸ”„ Plugin Lifecycle

Plugins can implement initialize() and cleanup() methods for setup and teardown:

class MyPlugin(TransformerPlugin):
    def initialize(self) -> None:
        super().initialize()
        # Load resources, connect to databases, etc.
    
    def cleanup(self) -> None:
        super().cleanup()
        # Close connections, free resources, etc.

πŸ” Pattern-based Extraction

Tukuy provides powerful pattern-based extraction capabilities for both HTML and JSON data.

🌐 HTML Extraction

pattern = {
    "properties": [
        {
            "name": "title",
            "selector": "h1",
            "transform": ["strip", "lowercase"]
        },
        {
            "name": "links",
            "selector": "a",
            "attribute": "href",
            "type": "array"
        }
    ]
}

data = TUKUY.extract_html_with_pattern(html, pattern)

πŸ“‹ JSON Extraction

pattern = {
    "properties": [
        {
            "name": "user",
            "selector": "data.user",
            "properties": [
                {
                    "name": "name",
                    "selector": "fullName",
                    "transform": ["strip"]
                }
            ]
        }
    ]
}

data = TUKUY.extract_json_with_pattern(json_str, pattern)

πŸš€ Use Cases

Tukuy is designed to handle a wide range of data transformation scenarios:

  • 🌐 Web Scraping: Extract structured data from HTML pages
  • πŸ“Š Data Cleaning: Normalize and validate data from various sources
  • πŸ”„ Format Conversion: Transform data between different formats
  • πŸ“ Text Processing: Apply complex text transformations
  • πŸ” Data Extraction: Extract specific information from complex structures
  • βœ… Validation: Ensure data meets specific criteria

⚑ Performance Tips

  • πŸ”— Chain Transformations: Use chained transformations to avoid intermediate objects
  • 🧩 Use Built-in Transformers: Built-in transformers are optimized for performance
  • πŸ” Be Specific with Selectors: More specific selectors are faster to process
  • πŸ› οΈ Custom Transformers: For performance-critical operations, create custom transformers
  • πŸ“¦ Batch Processing: Process data in batches for better performance

πŸ›‘οΈ Error Handling

Tukuy provides comprehensive error handling with detailed error messages:

from tukuy.exceptions import ValidationError, TransformationError, ParseError

try:
    result = TUKUY.transform(data, transformations)
except ValidationError as e:
    print(f"Validation failed: {e}")
except ParseError as e:
    print(f"Parsing failed: {e}")
except TransformationError as e:
    print(f"Transformation failed: {e}")

🀝 Contributing

Contributions are welcome! Here’s how you can help:

  1. 🍴 Fork the repository
  2. 🌿 Create a feature branch (git checkout -b feature/amazing-feature)
  3. πŸ’» Make your changes
  4. βœ… Run tests with pytest
  5. πŸ“ Update documentation if needed
  6. πŸ”„ Commit your changes (git commit -m 'Add amazing feature')
  7. πŸš€ Push to the branch (git push origin feature/amazing-feature)
  8. πŸ” Open a Pull Request